| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 | ⊢ ( 𝑥  =  𝑆  →  ( ∅  ∈  𝑥  ↔  ∅  ∈  𝑆 ) ) | 
						
							| 2 |  | id | ⊢ ( 𝑥  =  𝑆  →  𝑥  =  𝑆 ) | 
						
							| 3 |  | unieq | ⊢ ( 𝑥  =  𝑆  →  ∪  𝑥  =  ∪  𝑆 ) | 
						
							| 4 | 3 | difeq1d | ⊢ ( 𝑥  =  𝑆  →  ( ∪  𝑥  ∖  𝑦 )  =  ( ∪  𝑆  ∖  𝑦 ) ) | 
						
							| 5 | 4 2 | eleq12d | ⊢ ( 𝑥  =  𝑆  →  ( ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ↔  ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆 ) ) | 
						
							| 6 | 2 5 | raleqbidv | ⊢ ( 𝑥  =  𝑆  →  ( ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ↔  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆 ) ) | 
						
							| 7 |  | pweq | ⊢ ( 𝑥  =  𝑆  →  𝒫  𝑥  =  𝒫  𝑆 ) | 
						
							| 8 |  | eleq2 | ⊢ ( 𝑥  =  𝑆  →  ( ∪  𝑦  ∈  𝑥  ↔  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑥  =  𝑆  →  ( ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 )  ↔  ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) | 
						
							| 10 | 7 9 | raleqbidv | ⊢ ( 𝑥  =  𝑆  →  ( ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 )  ↔  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) | 
						
							| 11 | 1 6 10 | 3anbi123d | ⊢ ( 𝑥  =  𝑆  →  ( ( ∅  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) )  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) ) | 
						
							| 12 |  | df-salg | ⊢ SAlg  =  { 𝑥  ∣  ( ∅  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) ) } | 
						
							| 13 | 11 12 | elab2g | ⊢ ( 𝑆  ∈  𝑉  →  ( 𝑆  ∈  SAlg  ↔  ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ( ∪  𝑆  ∖  𝑦 )  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝒫  𝑆 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑆 ) ) ) ) |