| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csalg |
⊢ SAlg |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
c0 |
⊢ ∅ |
| 3 |
1
|
cv |
⊢ 𝑥 |
| 4 |
2 3
|
wcel |
⊢ ∅ ∈ 𝑥 |
| 5 |
|
vy |
⊢ 𝑦 |
| 6 |
3
|
cuni |
⊢ ∪ 𝑥 |
| 7 |
5
|
cv |
⊢ 𝑦 |
| 8 |
6 7
|
cdif |
⊢ ( ∪ 𝑥 ∖ 𝑦 ) |
| 9 |
8 3
|
wcel |
⊢ ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 |
| 10 |
9 5 3
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 |
| 11 |
3
|
cpw |
⊢ 𝒫 𝑥 |
| 12 |
|
cdom |
⊢ ≼ |
| 13 |
|
com |
⊢ ω |
| 14 |
7 13 12
|
wbr |
⊢ 𝑦 ≼ ω |
| 15 |
7
|
cuni |
⊢ ∪ 𝑦 |
| 16 |
15 3
|
wcel |
⊢ ∪ 𝑦 ∈ 𝑥 |
| 17 |
14 16
|
wi |
⊢ ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) |
| 18 |
17 5 11
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) |
| 19 |
4 10 18
|
w3a |
⊢ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) |
| 20 |
19 1
|
cab |
⊢ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) } |
| 21 |
0 20
|
wceq |
⊢ SAlg = { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) } |