| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csalg | ⊢ SAlg | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | c0 | ⊢ ∅ | 
						
							| 3 | 1 | cv | ⊢ 𝑥 | 
						
							| 4 | 2 3 | wcel | ⊢ ∅  ∈  𝑥 | 
						
							| 5 |  | vy | ⊢ 𝑦 | 
						
							| 6 | 3 | cuni | ⊢ ∪  𝑥 | 
						
							| 7 | 5 | cv | ⊢ 𝑦 | 
						
							| 8 | 6 7 | cdif | ⊢ ( ∪  𝑥  ∖  𝑦 ) | 
						
							| 9 | 8 3 | wcel | ⊢ ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥 | 
						
							| 10 | 9 5 3 | wral | ⊢ ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥 | 
						
							| 11 | 3 | cpw | ⊢ 𝒫  𝑥 | 
						
							| 12 |  | cdom | ⊢  ≼ | 
						
							| 13 |  | com | ⊢ ω | 
						
							| 14 | 7 13 12 | wbr | ⊢ 𝑦  ≼  ω | 
						
							| 15 | 7 | cuni | ⊢ ∪  𝑦 | 
						
							| 16 | 15 3 | wcel | ⊢ ∪  𝑦  ∈  𝑥 | 
						
							| 17 | 14 16 | wi | ⊢ ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) | 
						
							| 18 | 17 5 11 | wral | ⊢ ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) | 
						
							| 19 | 4 10 18 | w3a | ⊢ ( ∅  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) ) | 
						
							| 20 | 19 1 | cab | ⊢ { 𝑥  ∣  ( ∅  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) ) } | 
						
							| 21 | 0 20 | wceq | ⊢ SAlg  =  { 𝑥  ∣  ( ∅  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( ∪  𝑥  ∖  𝑦 )  ∈  𝑥  ∧  ∀ 𝑦  ∈  𝒫  𝑥 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  𝑥 ) ) } |