Step |
Hyp |
Ref |
Expression |
0 |
|
csalg |
⊢ SAlg |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
c0 |
⊢ ∅ |
3 |
1
|
cv |
⊢ 𝑥 |
4 |
2 3
|
wcel |
⊢ ∅ ∈ 𝑥 |
5 |
|
vy |
⊢ 𝑦 |
6 |
3
|
cuni |
⊢ ∪ 𝑥 |
7 |
5
|
cv |
⊢ 𝑦 |
8 |
6 7
|
cdif |
⊢ ( ∪ 𝑥 ∖ 𝑦 ) |
9 |
8 3
|
wcel |
⊢ ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 |
10 |
9 5 3
|
wral |
⊢ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 |
11 |
3
|
cpw |
⊢ 𝒫 𝑥 |
12 |
|
cdom |
⊢ ≼ |
13 |
|
com |
⊢ ω |
14 |
7 13 12
|
wbr |
⊢ 𝑦 ≼ ω |
15 |
7
|
cuni |
⊢ ∪ 𝑦 |
16 |
15 3
|
wcel |
⊢ ∪ 𝑦 ∈ 𝑥 |
17 |
14 16
|
wi |
⊢ ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) |
18 |
17 5 11
|
wral |
⊢ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) |
19 |
4 10 18
|
w3a |
⊢ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) |
20 |
19 1
|
cab |
⊢ { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) } |
21 |
0 20
|
wceq |
⊢ SAlg = { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ∪ 𝑥 ∖ 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑥 ) ) } |