Metamath Proof Explorer


Definition df-salg

Description: Define the class of sigma-algebras. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-salg SAlg = { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑥𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → 𝑦𝑥 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 csalg SAlg
1 vx 𝑥
2 c0
3 1 cv 𝑥
4 2 3 wcel ∅ ∈ 𝑥
5 vy 𝑦
6 3 cuni 𝑥
7 5 cv 𝑦
8 6 7 cdif ( 𝑥𝑦 )
9 8 3 wcel ( 𝑥𝑦 ) ∈ 𝑥
10 9 5 3 wral 𝑦𝑥 ( 𝑥𝑦 ) ∈ 𝑥
11 3 cpw 𝒫 𝑥
12 cdom
13 com ω
14 7 13 12 wbr 𝑦 ≼ ω
15 7 cuni 𝑦
16 15 3 wcel 𝑦𝑥
17 14 16 wi ( 𝑦 ≼ ω → 𝑦𝑥 )
18 17 5 11 wral 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → 𝑦𝑥 )
19 4 10 18 w3a ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑥𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → 𝑦𝑥 ) )
20 19 1 cab { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑥𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → 𝑦𝑥 ) ) }
21 0 20 wceq SAlg = { 𝑥 ∣ ( ∅ ∈ 𝑥 ∧ ∀ 𝑦𝑥 ( 𝑥𝑦 ) ∈ 𝑥 ∧ ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑦 ≼ ω → 𝑦𝑥 ) ) }