Step |
Hyp |
Ref |
Expression |
1 |
|
salgensscntex.a |
⊢ 𝐴 = ( 0 [,] 2 ) |
2 |
|
salgensscntex.s |
⊢ 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } |
3 |
|
salgensscntex.x |
⊢ 𝑋 = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) |
4 |
|
salgensscntex.g |
⊢ 𝐺 = ( SalGen ‘ 𝑋 ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
5 6
|
pm3.2i |
⊢ ( 0 ∈ ℝ ∧ 2 ∈ ℝ ) |
8 |
5
|
leidi |
⊢ 0 ≤ 0 |
9 |
|
1le2 |
⊢ 1 ≤ 2 |
10 |
8 9
|
pm3.2i |
⊢ ( 0 ≤ 0 ∧ 1 ≤ 2 ) |
11 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ 1 ≤ 2 ) ) → ( 0 [,] 1 ) ⊆ ( 0 [,] 2 ) ) |
12 |
7 10 11
|
mp2an |
⊢ ( 0 [,] 1 ) ⊆ ( 0 [,] 2 ) |
13 |
|
id |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ( 0 [,] 1 ) ) |
14 |
12 13
|
sselid |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ( 0 [,] 2 ) ) |
15 |
14 1
|
eleqtrrdi |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ 𝐴 ) |
16 |
|
snelpwi |
⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ∈ 𝒫 𝐴 ) |
17 |
15 16
|
syl |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → { 𝑦 } ∈ 𝒫 𝐴 ) |
18 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
19 |
|
fict |
⊢ ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω ) |
20 |
18 19
|
ax-mp |
⊢ { 𝑦 } ≼ ω |
21 |
|
orc |
⊢ ( { 𝑦 } ≼ ω → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
22 |
20 21
|
ax-mp |
⊢ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) |
23 |
22
|
a1i |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
24 |
17 23
|
jca |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
25 |
|
breq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) ) |
26 |
|
difeq2 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) ) |
27 |
26
|
breq1d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) |
28 |
25 27
|
orbi12d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
29 |
28 2
|
elrab2 |
⊢ ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) ) |
30 |
24 29
|
sylibr |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) → { 𝑦 } ∈ 𝑆 ) |
31 |
30
|
rgen |
⊢ ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ 𝑆 |
32 |
|
eqid |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) |
33 |
32
|
rnmptss |
⊢ ( ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ 𝑆 → ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ⊆ 𝑆 ) |
34 |
31 33
|
ax-mp |
⊢ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ⊆ 𝑆 |
35 |
3 34
|
eqsstri |
⊢ 𝑋 ⊆ 𝑆 |
36 |
|
ovex |
⊢ ( 0 [,] 2 ) ∈ V |
37 |
1 36
|
eqeltri |
⊢ 𝐴 ∈ V |
38 |
37
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ V ) |
39 |
38 2
|
salexct |
⊢ ( ⊤ → 𝑆 ∈ SAlg ) |
40 |
39
|
mptru |
⊢ 𝑆 ∈ SAlg |
41 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
42 |
41
|
mptex |
⊢ ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ∈ V |
43 |
42
|
rnex |
⊢ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ∈ V |
44 |
3 43
|
eqeltri |
⊢ 𝑋 ∈ V |
45 |
44
|
a1i |
⊢ ( ⊤ → 𝑋 ∈ V ) |
46 |
3
|
unieqi |
⊢ ∪ 𝑋 = ∪ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) |
47 |
|
snex |
⊢ { 𝑦 } ∈ V |
48 |
47
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ V |
49 |
|
dfiun3g |
⊢ ( ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ V → ∪ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ∪ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ) |
50 |
48 49
|
ax-mp |
⊢ ∪ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ∪ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) |
51 |
50
|
eqcomi |
⊢ ∪ ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) = ∪ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } |
52 |
|
iunid |
⊢ ∪ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ( 0 [,] 1 ) |
53 |
46 51 52
|
3eqtrri |
⊢ ( 0 [,] 1 ) = ∪ 𝑋 |
54 |
45 4 53
|
unisalgen |
⊢ ( ⊤ → ( 0 [,] 1 ) ∈ 𝐺 ) |
55 |
54
|
mptru |
⊢ ( 0 [,] 1 ) ∈ 𝐺 |
56 |
|
eqid |
⊢ ( 0 [,] 1 ) = ( 0 [,] 1 ) |
57 |
1 2 56
|
salexct2 |
⊢ ¬ ( 0 [,] 1 ) ∈ 𝑆 |
58 |
|
nelss |
⊢ ( ( ( 0 [,] 1 ) ∈ 𝐺 ∧ ¬ ( 0 [,] 1 ) ∈ 𝑆 ) → ¬ 𝐺 ⊆ 𝑆 ) |
59 |
55 57 58
|
mp2an |
⊢ ¬ 𝐺 ⊆ 𝑆 |
60 |
35 40 59
|
3pm3.2i |
⊢ ( 𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆 ) |