| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salexct2.1 |
⊢ 𝐴 = ( 0 [,] 2 ) |
| 2 |
|
salexct2.2 |
⊢ 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) } |
| 3 |
|
salexct2.3 |
⊢ 𝐵 = ( 0 [,] 1 ) |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( ⊤ → 0 ∈ ℝ* ) |
| 6 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ* ) |
| 8 |
|
0lt1 |
⊢ 0 < 1 |
| 9 |
8
|
a1i |
⊢ ( ⊤ → 0 < 1 ) |
| 10 |
5 7 9 3
|
iccnct |
⊢ ( ⊤ → ¬ 𝐵 ≼ ω ) |
| 11 |
10
|
mptru |
⊢ ¬ 𝐵 ≼ ω |
| 12 |
|
2re |
⊢ 2 ∈ ℝ |
| 13 |
12
|
rexri |
⊢ 2 ∈ ℝ* |
| 14 |
13
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ* ) |
| 15 |
|
1lt2 |
⊢ 1 < 2 |
| 16 |
15
|
a1i |
⊢ ( ⊤ → 1 < 2 ) |
| 17 |
|
eqid |
⊢ ( 1 (,] 2 ) = ( 1 (,] 2 ) |
| 18 |
7 14 16 17
|
iocnct |
⊢ ( ⊤ → ¬ ( 1 (,] 2 ) ≼ ω ) |
| 19 |
18
|
mptru |
⊢ ¬ ( 1 (,] 2 ) ≼ ω |
| 20 |
1 3
|
difeq12i |
⊢ ( 𝐴 ∖ 𝐵 ) = ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) ) |
| 21 |
5 7 9
|
xrltled |
⊢ ( ⊤ → 0 ≤ 1 ) |
| 22 |
5 7 14 21
|
iccdificc |
⊢ ( ⊤ → ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) ) = ( 1 (,] 2 ) ) |
| 23 |
22
|
mptru |
⊢ ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) ) = ( 1 (,] 2 ) |
| 24 |
20 23
|
eqtri |
⊢ ( 𝐴 ∖ 𝐵 ) = ( 1 (,] 2 ) |
| 25 |
24
|
breq1i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≼ ω ↔ ( 1 (,] 2 ) ≼ ω ) |
| 26 |
19 25
|
mtbir |
⊢ ¬ ( 𝐴 ∖ 𝐵 ) ≼ ω |
| 27 |
11 26
|
pm3.2i |
⊢ ( ¬ 𝐵 ≼ ω ∧ ¬ ( 𝐴 ∖ 𝐵 ) ≼ ω ) |
| 28 |
|
ioran |
⊢ ( ¬ ( 𝐵 ≼ ω ∨ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ↔ ( ¬ 𝐵 ≼ ω ∧ ¬ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ) |
| 29 |
27 28
|
mpbir |
⊢ ¬ ( 𝐵 ≼ ω ∨ ( 𝐴 ∖ 𝐵 ) ≼ ω ) |
| 30 |
29
|
intnan |
⊢ ¬ ( 𝐵 ∈ 𝒫 𝐴 ∧ ( 𝐵 ≼ ω ∨ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ) |
| 31 |
|
breq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≼ ω ↔ 𝐵 ≼ ω ) ) |
| 32 |
|
difeq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ 𝐵 ) ) |
| 33 |
32
|
breq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∖ 𝑥 ) ≼ ω ↔ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ) |
| 34 |
31 33
|
orbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ≼ ω ∨ ( 𝐴 ∖ 𝑥 ) ≼ ω ) ↔ ( 𝐵 ≼ ω ∨ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ) ) |
| 35 |
34 2
|
elrab2 |
⊢ ( 𝐵 ∈ 𝑆 ↔ ( 𝐵 ∈ 𝒫 𝐴 ∧ ( 𝐵 ≼ ω ∨ ( 𝐴 ∖ 𝐵 ) ≼ ω ) ) ) |
| 36 |
30 35
|
mtbir |
⊢ ¬ 𝐵 ∈ 𝑆 |