Metamath Proof Explorer


Theorem salexct2

Description: An example of a subset that does not belong to a nontrivial sigma-algebra, see salexct . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct2.1 𝐴 = ( 0 [,] 2 )
salexct2.2 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
salexct2.3 𝐵 = ( 0 [,] 1 )
Assertion salexct2 ¬ 𝐵𝑆

Proof

Step Hyp Ref Expression
1 salexct2.1 𝐴 = ( 0 [,] 2 )
2 salexct2.2 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
3 salexct2.3 𝐵 = ( 0 [,] 1 )
4 0xr 0 ∈ ℝ*
5 4 a1i ( ⊤ → 0 ∈ ℝ* )
6 1xr 1 ∈ ℝ*
7 6 a1i ( ⊤ → 1 ∈ ℝ* )
8 0lt1 0 < 1
9 8 a1i ( ⊤ → 0 < 1 )
10 5 7 9 3 iccnct ( ⊤ → ¬ 𝐵 ≼ ω )
11 10 mptru ¬ 𝐵 ≼ ω
12 2re 2 ∈ ℝ
13 12 rexri 2 ∈ ℝ*
14 13 a1i ( ⊤ → 2 ∈ ℝ* )
15 1lt2 1 < 2
16 15 a1i ( ⊤ → 1 < 2 )
17 eqid ( 1 (,] 2 ) = ( 1 (,] 2 )
18 7 14 16 17 iocnct ( ⊤ → ¬ ( 1 (,] 2 ) ≼ ω )
19 18 mptru ¬ ( 1 (,] 2 ) ≼ ω
20 1 3 difeq12i ( 𝐴𝐵 ) = ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) )
21 5 7 9 xrltled ( ⊤ → 0 ≤ 1 )
22 5 7 14 21 iccdificc ( ⊤ → ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) ) = ( 1 (,] 2 ) )
23 22 mptru ( ( 0 [,] 2 ) ∖ ( 0 [,] 1 ) ) = ( 1 (,] 2 )
24 20 23 eqtri ( 𝐴𝐵 ) = ( 1 (,] 2 )
25 24 breq1i ( ( 𝐴𝐵 ) ≼ ω ↔ ( 1 (,] 2 ) ≼ ω )
26 19 25 mtbir ¬ ( 𝐴𝐵 ) ≼ ω
27 11 26 pm3.2i ( ¬ 𝐵 ≼ ω ∧ ¬ ( 𝐴𝐵 ) ≼ ω )
28 ioran ( ¬ ( 𝐵 ≼ ω ∨ ( 𝐴𝐵 ) ≼ ω ) ↔ ( ¬ 𝐵 ≼ ω ∧ ¬ ( 𝐴𝐵 ) ≼ ω ) )
29 27 28 mpbir ¬ ( 𝐵 ≼ ω ∨ ( 𝐴𝐵 ) ≼ ω )
30 29 intnan ¬ ( 𝐵 ∈ 𝒫 𝐴 ∧ ( 𝐵 ≼ ω ∨ ( 𝐴𝐵 ) ≼ ω ) )
31 breq1 ( 𝑥 = 𝐵 → ( 𝑥 ≼ ω ↔ 𝐵 ≼ ω ) )
32 difeq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥 ) = ( 𝐴𝐵 ) )
33 32 breq1d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥 ) ≼ ω ↔ ( 𝐴𝐵 ) ≼ ω ) )
34 31 33 orbi12d ( 𝑥 = 𝐵 → ( ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) ↔ ( 𝐵 ≼ ω ∨ ( 𝐴𝐵 ) ≼ ω ) ) )
35 34 2 elrab2 ( 𝐵𝑆 ↔ ( 𝐵 ∈ 𝒫 𝐴 ∧ ( 𝐵 ≼ ω ∨ ( 𝐴𝐵 ) ≼ ω ) ) )
36 30 35 mtbir ¬ 𝐵𝑆