| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salexct2.1 | ⊢ 𝐴  =  ( 0 [,] 2 ) | 
						
							| 2 |  | salexct2.2 | ⊢ 𝑆  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) } | 
						
							| 3 |  | salexct2.3 | ⊢ 𝐵  =  ( 0 [,] 1 ) | 
						
							| 4 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 5 | 4 | a1i | ⊢ ( ⊤  →  0  ∈  ℝ* ) | 
						
							| 6 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  1  ∈  ℝ* ) | 
						
							| 8 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 9 | 8 | a1i | ⊢ ( ⊤  →  0  <  1 ) | 
						
							| 10 | 5 7 9 3 | iccnct | ⊢ ( ⊤  →  ¬  𝐵  ≼  ω ) | 
						
							| 11 | 10 | mptru | ⊢ ¬  𝐵  ≼  ω | 
						
							| 12 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 13 | 12 | rexri | ⊢ 2  ∈  ℝ* | 
						
							| 14 | 13 | a1i | ⊢ ( ⊤  →  2  ∈  ℝ* ) | 
						
							| 15 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 16 | 15 | a1i | ⊢ ( ⊤  →  1  <  2 ) | 
						
							| 17 |  | eqid | ⊢ ( 1 (,] 2 )  =  ( 1 (,] 2 ) | 
						
							| 18 | 7 14 16 17 | iocnct | ⊢ ( ⊤  →  ¬  ( 1 (,] 2 )  ≼  ω ) | 
						
							| 19 | 18 | mptru | ⊢ ¬  ( 1 (,] 2 )  ≼  ω | 
						
							| 20 | 1 3 | difeq12i | ⊢ ( 𝐴  ∖  𝐵 )  =  ( ( 0 [,] 2 )  ∖  ( 0 [,] 1 ) ) | 
						
							| 21 | 5 7 9 | xrltled | ⊢ ( ⊤  →  0  ≤  1 ) | 
						
							| 22 | 5 7 14 21 | iccdificc | ⊢ ( ⊤  →  ( ( 0 [,] 2 )  ∖  ( 0 [,] 1 ) )  =  ( 1 (,] 2 ) ) | 
						
							| 23 | 22 | mptru | ⊢ ( ( 0 [,] 2 )  ∖  ( 0 [,] 1 ) )  =  ( 1 (,] 2 ) | 
						
							| 24 | 20 23 | eqtri | ⊢ ( 𝐴  ∖  𝐵 )  =  ( 1 (,] 2 ) | 
						
							| 25 | 24 | breq1i | ⊢ ( ( 𝐴  ∖  𝐵 )  ≼  ω  ↔  ( 1 (,] 2 )  ≼  ω ) | 
						
							| 26 | 19 25 | mtbir | ⊢ ¬  ( 𝐴  ∖  𝐵 )  ≼  ω | 
						
							| 27 | 11 26 | pm3.2i | ⊢ ( ¬  𝐵  ≼  ω  ∧  ¬  ( 𝐴  ∖  𝐵 )  ≼  ω ) | 
						
							| 28 |  | ioran | ⊢ ( ¬  ( 𝐵  ≼  ω  ∨  ( 𝐴  ∖  𝐵 )  ≼  ω )  ↔  ( ¬  𝐵  ≼  ω  ∧  ¬  ( 𝐴  ∖  𝐵 )  ≼  ω ) ) | 
						
							| 29 | 27 28 | mpbir | ⊢ ¬  ( 𝐵  ≼  ω  ∨  ( 𝐴  ∖  𝐵 )  ≼  ω ) | 
						
							| 30 | 29 | intnan | ⊢ ¬  ( 𝐵  ∈  𝒫  𝐴  ∧  ( 𝐵  ≼  ω  ∨  ( 𝐴  ∖  𝐵 )  ≼  ω ) ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ≼  ω  ↔  𝐵  ≼  ω ) ) | 
						
							| 32 |  | difeq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  𝐵 )  ≼  ω ) ) | 
						
							| 34 | 31 33 | orbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( 𝐵  ≼  ω  ∨  ( 𝐴  ∖  𝐵 )  ≼  ω ) ) ) | 
						
							| 35 | 34 2 | elrab2 | ⊢ ( 𝐵  ∈  𝑆  ↔  ( 𝐵  ∈  𝒫  𝐴  ∧  ( 𝐵  ≼  ω  ∨  ( 𝐴  ∖  𝐵 )  ≼  ω ) ) ) | 
						
							| 36 | 30 35 | mtbir | ⊢ ¬  𝐵  ∈  𝑆 |