Description: A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccnct.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| iccnct.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| iccnct.l | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| iccnct.c | ⊢ 𝐶 = ( 𝐴 [,] 𝐵 ) | ||
| Assertion | iccnct | ⊢ ( 𝜑 → ¬ 𝐶 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccnct.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | iccnct.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | iccnct.l | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 4 | iccnct.c | ⊢ 𝐶 = ( 𝐴 [,] 𝐵 ) | |
| 5 | eqid | ⊢ ( 𝐴 (,) 𝐵 ) = ( 𝐴 (,) 𝐵 ) | |
| 6 | 1 2 3 5 | ioonct | ⊢ ( 𝜑 → ¬ ( 𝐴 (,) 𝐵 ) ≼ ω ) |
| 7 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 8 | 7 4 | sseqtrri | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ 𝐶 |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐶 ) |
| 10 | 6 9 | ssnct | ⊢ ( 𝜑 → ¬ 𝐶 ≼ ω ) |