Metamath Proof Explorer


Theorem iccnct

Description: A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses iccnct.a ( 𝜑𝐴 ∈ ℝ* )
iccnct.b ( 𝜑𝐵 ∈ ℝ* )
iccnct.l ( 𝜑𝐴 < 𝐵 )
iccnct.c 𝐶 = ( 𝐴 [,] 𝐵 )
Assertion iccnct ( 𝜑 → ¬ 𝐶 ≼ ω )

Proof

Step Hyp Ref Expression
1 iccnct.a ( 𝜑𝐴 ∈ ℝ* )
2 iccnct.b ( 𝜑𝐵 ∈ ℝ* )
3 iccnct.l ( 𝜑𝐴 < 𝐵 )
4 iccnct.c 𝐶 = ( 𝐴 [,] 𝐵 )
5 eqid ( 𝐴 (,) 𝐵 ) = ( 𝐴 (,) 𝐵 )
6 1 2 3 5 ioonct ( 𝜑 → ¬ ( 𝐴 (,) 𝐵 ) ≼ ω )
7 ioossicc ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 )
8 7 4 sseqtrri ( 𝐴 (,) 𝐵 ) ⊆ 𝐶
9 8 a1i ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝐶 )
10 6 9 ssnct ( 𝜑 → ¬ 𝐶 ≼ ω )