| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioonct.b | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | ioonct.c | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | ioonct.l | ⊢ ( 𝜑  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | ioonct.a | ⊢ 𝐶  =  ( 𝐴 (,) 𝐵 ) | 
						
							| 5 |  | ioontr | ⊢ ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 7 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 9 | 4 | breq1i | ⊢ ( 𝐶  ≼  ω  ↔  ( 𝐴 (,) 𝐵 )  ≼  ω ) | 
						
							| 10 | 9 | biimpi | ⊢ ( 𝐶  ≼  ω  →  ( 𝐴 (,) 𝐵 )  ≼  ω ) | 
						
							| 11 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 12 | 11 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐶  ≼  ω  →  ω  ≈  ℕ ) | 
						
							| 14 |  | domentr | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ≼  ω  ∧  ω  ≈  ℕ )  →  ( 𝐴 (,) 𝐵 )  ≼  ℕ ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( 𝐶  ≼  ω  →  ( 𝐴 (,) 𝐵 )  ≼  ℕ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ( 𝐴 (,) 𝐵 )  ≼  ℕ ) | 
						
							| 17 |  | rectbntr0 | ⊢ ( ( ( 𝐴 (,) 𝐵 )  ⊆  ℝ  ∧  ( 𝐴 (,) 𝐵 )  ≼  ℕ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) )  =  ∅ ) | 
						
							| 18 | 8 16 17 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) )  =  ∅ ) | 
						
							| 19 | 6 18 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 20 |  | ioon0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 (,) 𝐵 )  ≠  ∅  ↔  𝐴  <  𝐵 ) ) | 
						
							| 21 | 1 2 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 (,) 𝐵 )  ≠  ∅  ↔  𝐴  <  𝐵 ) ) | 
						
							| 22 | 3 21 | mpbird | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ ) | 
						
							| 23 | 22 | neneqd | ⊢ ( 𝜑  →  ¬  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≼  ω )  →  ¬  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 25 | 19 24 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐶  ≼  ω ) |