| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrgtnelicc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | xrgtnelicc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | xrgtnelicc.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 4 |  | xrgtnelicc.4 | ⊢ ( 𝜑  →  𝐵  <  𝐶 ) | 
						
							| 5 |  | xrltnle | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  <  𝐶  ↔  ¬  𝐶  ≤  𝐵 ) ) | 
						
							| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  <  𝐶  ↔  ¬  𝐶  ≤  𝐵 ) ) | 
						
							| 7 | 4 6 | mpbid | ⊢ ( 𝜑  →  ¬  𝐶  ≤  𝐵 ) | 
						
							| 8 | 7 | intnand | ⊢ ( 𝜑  →  ¬  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) | 
						
							| 9 |  | elicc4 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 10 | 1 2 3 9 | syl3anc | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝐴  ≤  𝐶  ∧  𝐶  ≤  𝐵 ) ) ) | 
						
							| 11 | 8 10 | mtbird | ⊢ ( 𝜑  →  ¬  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) |