Metamath Proof Explorer


Theorem xrgtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses xrgtnelicc.1 φ A *
xrgtnelicc.2 φ B *
xrgtnelicc.3 φ C *
xrgtnelicc.4 φ B < C
Assertion xrgtnelicc φ ¬ C A B

Proof

Step Hyp Ref Expression
1 xrgtnelicc.1 φ A *
2 xrgtnelicc.2 φ B *
3 xrgtnelicc.3 φ C *
4 xrgtnelicc.4 φ B < C
5 xrltnle B * C * B < C ¬ C B
6 2 3 5 syl2anc φ B < C ¬ C B
7 4 6 mpbid φ ¬ C B
8 7 intnand φ ¬ A C C B
9 elicc4 A * B * C * C A B A C C B
10 1 2 3 9 syl3anc φ C A B A C C B
11 8 10 mtbird φ ¬ C A B