| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrgtnelicc.1 |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | xrgtnelicc.2 |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | xrgtnelicc.3 |  |-  ( ph -> C e. RR* ) | 
						
							| 4 |  | xrgtnelicc.4 |  |-  ( ph -> B < C ) | 
						
							| 5 |  | xrltnle |  |-  ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) ) | 
						
							| 6 | 2 3 5 | syl2anc |  |-  ( ph -> ( B < C <-> -. C <_ B ) ) | 
						
							| 7 | 4 6 | mpbid |  |-  ( ph -> -. C <_ B ) | 
						
							| 8 | 7 | intnand |  |-  ( ph -> -. ( A <_ C /\ C <_ B ) ) | 
						
							| 9 |  | elicc4 |  |-  ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) | 
						
							| 10 | 1 2 3 9 | syl3anc |  |-  ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) | 
						
							| 11 | 8 10 | mtbird |  |-  ( ph -> -. C e. ( A [,] B ) ) |