Metamath Proof Explorer


Theorem xrltnle

Description: "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion xrltnle
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) )

Proof

Step Hyp Ref Expression
1 xrlenlt
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) )
2 1 con2bid
 |-  ( ( B e. RR* /\ A e. RR* ) -> ( A < B <-> -. B <_ A ) )
3 2 ancoms
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) )