| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccdificc.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
iccdificc.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
iccdificc.c |
|- ( ph -> C e. RR* ) |
| 4 |
|
iccdificc.4 |
|- ( ph -> A <_ B ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> B e. RR* ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> C e. RR* ) |
| 7 |
|
iccssxr |
|- ( A [,] C ) C_ RR* |
| 8 |
|
eldifi |
|- ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> x e. ( A [,] C ) ) |
| 9 |
7 8
|
sselid |
|- ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> x e. RR* ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. RR* ) |
| 11 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> A e. RR* ) |
| 12 |
5
|
adantr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> B e. RR* ) |
| 13 |
10
|
adantr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x e. RR* ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> A e. RR* ) |
| 15 |
8
|
adantl |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. ( A [,] C ) ) |
| 16 |
|
iccgelb |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,] C ) ) -> A <_ x ) |
| 17 |
14 6 15 16
|
syl3anc |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> A <_ x ) |
| 18 |
17
|
adantr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> A <_ x ) |
| 19 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> -. B < x ) |
| 20 |
10 5
|
xrlenltd |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> ( x <_ B <-> -. B < x ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> ( x <_ B <-> -. B < x ) ) |
| 22 |
19 21
|
mpbird |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x <_ B ) |
| 23 |
11 12 13 18 22
|
eliccxrd |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x e. ( A [,] B ) ) |
| 24 |
|
eldifn |
|- ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> -. x e. ( A [,] B ) ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> -. x e. ( A [,] B ) ) |
| 26 |
23 25
|
condan |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> B < x ) |
| 27 |
|
iccleub |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,] C ) ) -> x <_ C ) |
| 28 |
14 6 15 27
|
syl3anc |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x <_ C ) |
| 29 |
5 6 10 26 28
|
eliocd |
|- ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. ( B (,] C ) ) |
| 30 |
29
|
ralrimiva |
|- ( ph -> A. x e. ( ( A [,] C ) \ ( A [,] B ) ) x e. ( B (,] C ) ) |
| 31 |
|
dfss3 |
|- ( ( ( A [,] C ) \ ( A [,] B ) ) C_ ( B (,] C ) <-> A. x e. ( ( A [,] C ) \ ( A [,] B ) ) x e. ( B (,] C ) ) |
| 32 |
30 31
|
sylibr |
|- ( ph -> ( ( A [,] C ) \ ( A [,] B ) ) C_ ( B (,] C ) ) |
| 33 |
1
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> A e. RR* ) |
| 34 |
3
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> C e. RR* ) |
| 35 |
|
iocssxr |
|- ( B (,] C ) C_ RR* |
| 36 |
|
id |
|- ( x e. ( B (,] C ) -> x e. ( B (,] C ) ) |
| 37 |
35 36
|
sselid |
|- ( x e. ( B (,] C ) -> x e. RR* ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. RR* ) |
| 39 |
2
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B e. RR* ) |
| 40 |
4
|
adantr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> A <_ B ) |
| 41 |
|
simpr |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( B (,] C ) ) |
| 42 |
|
iocgtlb |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> B < x ) |
| 43 |
39 34 41 42
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> B < x ) |
| 44 |
33 39 38 40 43
|
xrlelttrd |
|- ( ( ph /\ x e. ( B (,] C ) ) -> A < x ) |
| 45 |
33 38 44
|
xrltled |
|- ( ( ph /\ x e. ( B (,] C ) ) -> A <_ x ) |
| 46 |
|
iocleub |
|- ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> x <_ C ) |
| 47 |
39 34 41 46
|
syl3anc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x <_ C ) |
| 48 |
33 34 38 45 47
|
eliccxrd |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( A [,] C ) ) |
| 49 |
33 39 38 43
|
xrgtnelicc |
|- ( ( ph /\ x e. ( B (,] C ) ) -> -. x e. ( A [,] B ) ) |
| 50 |
48 49
|
eldifd |
|- ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( ( A [,] C ) \ ( A [,] B ) ) ) |
| 51 |
32 50
|
eqelssd |
|- ( ph -> ( ( A [,] C ) \ ( A [,] B ) ) = ( B (,] C ) ) |