| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccdificc.a |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | iccdificc.b |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | iccdificc.c |  |-  ( ph -> C e. RR* ) | 
						
							| 4 |  | iccdificc.4 |  |-  ( ph -> A <_ B ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> B e. RR* ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> C e. RR* ) | 
						
							| 7 |  | iccssxr |  |-  ( A [,] C ) C_ RR* | 
						
							| 8 |  | eldifi |  |-  ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> x e. ( A [,] C ) ) | 
						
							| 9 | 7 8 | sselid |  |-  ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> x e. RR* ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. RR* ) | 
						
							| 11 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> A e. RR* ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> B e. RR* ) | 
						
							| 13 | 10 | adantr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x e. RR* ) | 
						
							| 14 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> A e. RR* ) | 
						
							| 15 | 8 | adantl |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. ( A [,] C ) ) | 
						
							| 16 |  | iccgelb |  |-  ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,] C ) ) -> A <_ x ) | 
						
							| 17 | 14 6 15 16 | syl3anc |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> A <_ x ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> A <_ x ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> -. B < x ) | 
						
							| 20 | 10 5 | xrlenltd |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> ( x <_ B <-> -. B < x ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> ( x <_ B <-> -. B < x ) ) | 
						
							| 22 | 19 21 | mpbird |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x <_ B ) | 
						
							| 23 | 11 12 13 18 22 | eliccxrd |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> x e. ( A [,] B ) ) | 
						
							| 24 |  | eldifn |  |-  ( x e. ( ( A [,] C ) \ ( A [,] B ) ) -> -. x e. ( A [,] B ) ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) /\ -. B < x ) -> -. x e. ( A [,] B ) ) | 
						
							| 26 | 23 25 | condan |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> B < x ) | 
						
							| 27 |  | iccleub |  |-  ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,] C ) ) -> x <_ C ) | 
						
							| 28 | 14 6 15 27 | syl3anc |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x <_ C ) | 
						
							| 29 | 5 6 10 26 28 | eliocd |  |-  ( ( ph /\ x e. ( ( A [,] C ) \ ( A [,] B ) ) ) -> x e. ( B (,] C ) ) | 
						
							| 30 | 29 | ralrimiva |  |-  ( ph -> A. x e. ( ( A [,] C ) \ ( A [,] B ) ) x e. ( B (,] C ) ) | 
						
							| 31 |  | dfss3 |  |-  ( ( ( A [,] C ) \ ( A [,] B ) ) C_ ( B (,] C ) <-> A. x e. ( ( A [,] C ) \ ( A [,] B ) ) x e. ( B (,] C ) ) | 
						
							| 32 | 30 31 | sylibr |  |-  ( ph -> ( ( A [,] C ) \ ( A [,] B ) ) C_ ( B (,] C ) ) | 
						
							| 33 | 1 | adantr |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> A e. RR* ) | 
						
							| 34 | 3 | adantr |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> C e. RR* ) | 
						
							| 35 |  | iocssxr |  |-  ( B (,] C ) C_ RR* | 
						
							| 36 |  | id |  |-  ( x e. ( B (,] C ) -> x e. ( B (,] C ) ) | 
						
							| 37 | 35 36 | sselid |  |-  ( x e. ( B (,] C ) -> x e. RR* ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> x e. RR* ) | 
						
							| 39 | 2 | adantr |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> B e. RR* ) | 
						
							| 40 | 4 | adantr |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> A <_ B ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( B (,] C ) ) | 
						
							| 42 |  | iocgtlb |  |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> B < x ) | 
						
							| 43 | 39 34 41 42 | syl3anc |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> B < x ) | 
						
							| 44 | 33 39 38 40 43 | xrlelttrd |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> A < x ) | 
						
							| 45 | 33 38 44 | xrltled |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> A <_ x ) | 
						
							| 46 |  | iocleub |  |-  ( ( B e. RR* /\ C e. RR* /\ x e. ( B (,] C ) ) -> x <_ C ) | 
						
							| 47 | 39 34 41 46 | syl3anc |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> x <_ C ) | 
						
							| 48 | 33 34 38 45 47 | eliccxrd |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( A [,] C ) ) | 
						
							| 49 | 33 39 38 43 | xrgtnelicc |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> -. x e. ( A [,] B ) ) | 
						
							| 50 | 48 49 | eldifd |  |-  ( ( ph /\ x e. ( B (,] C ) ) -> x e. ( ( A [,] C ) \ ( A [,] B ) ) ) | 
						
							| 51 | 32 50 | eqelssd |  |-  ( ph -> ( ( A [,] C ) \ ( A [,] B ) ) = ( B (,] C ) ) |