Description: A nonempty left-open, right-closed interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iocnct.a | |- ( ph -> A e. RR* ) |
|
| iocnct.b | |- ( ph -> B e. RR* ) |
||
| iocnct.l | |- ( ph -> A < B ) |
||
| iocnct.c | |- C = ( A (,] B ) |
||
| Assertion | iocnct | |- ( ph -> -. C ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocnct.a | |- ( ph -> A e. RR* ) |
|
| 2 | iocnct.b | |- ( ph -> B e. RR* ) |
|
| 3 | iocnct.l | |- ( ph -> A < B ) |
|
| 4 | iocnct.c | |- C = ( A (,] B ) |
|
| 5 | eqid | |- ( A (,) B ) = ( A (,) B ) |
|
| 6 | 1 2 3 5 | ioonct | |- ( ph -> -. ( A (,) B ) ~<_ _om ) |
| 7 | ioossioc | |- ( A (,) B ) C_ ( A (,] B ) |
|
| 8 | 7 4 | sseqtrri | |- ( A (,) B ) C_ C |
| 9 | 8 | a1i | |- ( ph -> ( A (,) B ) C_ C ) |
| 10 | 6 9 | ssnct | |- ( ph -> -. C ~<_ _om ) |