Description: A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iccnct.a | |- ( ph -> A e. RR* ) |
|
iccnct.b | |- ( ph -> B e. RR* ) |
||
iccnct.l | |- ( ph -> A < B ) |
||
iccnct.c | |- C = ( A [,] B ) |
||
Assertion | iccnct | |- ( ph -> -. C ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccnct.a | |- ( ph -> A e. RR* ) |
|
2 | iccnct.b | |- ( ph -> B e. RR* ) |
|
3 | iccnct.l | |- ( ph -> A < B ) |
|
4 | iccnct.c | |- C = ( A [,] B ) |
|
5 | eqid | |- ( A (,) B ) = ( A (,) B ) |
|
6 | 1 2 3 5 | ioonct | |- ( ph -> -. ( A (,) B ) ~<_ _om ) |
7 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
8 | 7 4 | sseqtrri | |- ( A (,) B ) C_ C |
9 | 8 | a1i | |- ( ph -> ( A (,) B ) C_ C ) |
10 | 6 9 | ssnct | |- ( ph -> -. C ~<_ _om ) |