Metamath Proof Explorer


Theorem iccnct

Description: A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses iccnct.a
|- ( ph -> A e. RR* )
iccnct.b
|- ( ph -> B e. RR* )
iccnct.l
|- ( ph -> A < B )
iccnct.c
|- C = ( A [,] B )
Assertion iccnct
|- ( ph -> -. C ~<_ _om )

Proof

Step Hyp Ref Expression
1 iccnct.a
 |-  ( ph -> A e. RR* )
2 iccnct.b
 |-  ( ph -> B e. RR* )
3 iccnct.l
 |-  ( ph -> A < B )
4 iccnct.c
 |-  C = ( A [,] B )
5 eqid
 |-  ( A (,) B ) = ( A (,) B )
6 1 2 3 5 ioonct
 |-  ( ph -> -. ( A (,) B ) ~<_ _om )
7 ioossicc
 |-  ( A (,) B ) C_ ( A [,] B )
8 7 4 sseqtrri
 |-  ( A (,) B ) C_ C
9 8 a1i
 |-  ( ph -> ( A (,) B ) C_ C )
10 6 9 ssnct
 |-  ( ph -> -. C ~<_ _om )