| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioonct.b |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | ioonct.c |  |-  ( ph -> B e. RR* ) | 
						
							| 3 |  | ioonct.l |  |-  ( ph -> A < B ) | 
						
							| 4 |  | ioonct.a |  |-  C = ( A (,) B ) | 
						
							| 5 |  | ioontr |  |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ C ~<_ _om ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) ) | 
						
							| 7 |  | ioossre |  |-  ( A (,) B ) C_ RR | 
						
							| 8 | 7 | a1i |  |-  ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) C_ RR ) | 
						
							| 9 | 4 | breq1i |  |-  ( C ~<_ _om <-> ( A (,) B ) ~<_ _om ) | 
						
							| 10 | 9 | biimpi |  |-  ( C ~<_ _om -> ( A (,) B ) ~<_ _om ) | 
						
							| 11 |  | nnenom |  |-  NN ~~ _om | 
						
							| 12 | 11 | ensymi |  |-  _om ~~ NN | 
						
							| 13 | 12 | a1i |  |-  ( C ~<_ _om -> _om ~~ NN ) | 
						
							| 14 |  | domentr |  |-  ( ( ( A (,) B ) ~<_ _om /\ _om ~~ NN ) -> ( A (,) B ) ~<_ NN ) | 
						
							| 15 | 10 13 14 | syl2anc |  |-  ( C ~<_ _om -> ( A (,) B ) ~<_ NN ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) ~<_ NN ) | 
						
							| 17 |  | rectbntr0 |  |-  ( ( ( A (,) B ) C_ RR /\ ( A (,) B ) ~<_ NN ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = (/) ) | 
						
							| 18 | 8 16 17 | syl2anc |  |-  ( ( ph /\ C ~<_ _om ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = (/) ) | 
						
							| 19 | 6 18 | eqtr3d |  |-  ( ( ph /\ C ~<_ _om ) -> ( A (,) B ) = (/) ) | 
						
							| 20 |  | ioon0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A (,) B ) =/= (/) <-> A < B ) ) | 
						
							| 21 | 1 2 20 | syl2anc |  |-  ( ph -> ( ( A (,) B ) =/= (/) <-> A < B ) ) | 
						
							| 22 | 3 21 | mpbird |  |-  ( ph -> ( A (,) B ) =/= (/) ) | 
						
							| 23 | 22 | neneqd |  |-  ( ph -> -. ( A (,) B ) = (/) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ C ~<_ _om ) -> -. ( A (,) B ) = (/) ) | 
						
							| 25 | 19 24 | pm2.65da |  |-  ( ph -> -. C ~<_ _om ) |