Metamath Proof Explorer
Description: A closed interval, with more than one element is uncountable.
(Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
iccnct.a |
|
|
|
iccnct.b |
|
|
|
iccnct.l |
|
|
|
iccnct.c |
|
|
Assertion |
iccnct |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccnct.a |
|
| 2 |
|
iccnct.b |
|
| 3 |
|
iccnct.l |
|
| 4 |
|
iccnct.c |
|
| 5 |
|
eqid |
|
| 6 |
1 2 3 5
|
ioonct |
|
| 7 |
|
ioossicc |
|
| 8 |
7 4
|
sseqtrri |
|
| 9 |
8
|
a1i |
|
| 10 |
6 9
|
ssnct |
|