Metamath Proof Explorer
		
		
		
		Description:  A nonempty left-open, right-closed interval is uncountable.
       (Contributed by Glauco Siliprandi, 3-Jan-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | iocnct.a |  | 
					
						|  |  | iocnct.b |  | 
					
						|  |  | iocnct.l |  | 
					
						|  |  | iocnct.c |  | 
				
					|  | Assertion | iocnct |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iocnct.a |  | 
						
							| 2 |  | iocnct.b |  | 
						
							| 3 |  | iocnct.l |  | 
						
							| 4 |  | iocnct.c |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 2 3 5 | ioonct |  | 
						
							| 7 |  | ioossioc |  | 
						
							| 8 | 7 4 | sseqtrri |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 | 6 9 | ssnct |  |