Metamath Proof Explorer


Theorem ioossioc

Description: An open interval is a subset of its right closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioossioc A B A B

Proof

Step Hyp Ref Expression
1 df-ioo . = x * , y * z * | x < z z < y
2 df-ioc . = x * , y * z * | x < z z y
3 idd A * w * A < w A < w
4 xrltle w * B * w < B w B
5 1 2 3 4 ixxssixx A B A B