Metamath Proof Explorer


Theorem ixxssixx

Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixx.2 P = x * , y * z * | x T z z U y
ixx.3 A * w * A R w A T w
ixx.4 w * B * w S B w U B
Assertion ixxssixx A O B A P B

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixx.2 P = x * , y * z * | x T z z U y
3 ixx.3 A * w * A R w A T w
4 ixx.4 w * B * w S B w U B
5 1 elmpocl w A O B A * B *
6 simp1 w * A R w w S B w *
7 6 a1i A * B * w * A R w w S B w *
8 simpl A * B * A *
9 3simpa w * A R w w S B w * A R w
10 3 expimpd A * w * A R w A T w
11 8 9 10 syl2im A * B * w * A R w w S B A T w
12 simpr A * B * B *
13 3simpb w * A R w w S B w * w S B
14 4 ancoms B * w * w S B w U B
15 14 expimpd B * w * w S B w U B
16 12 13 15 syl2im A * B * w * A R w w S B w U B
17 7 11 16 3jcad A * B * w * A R w w S B w * A T w w U B
18 1 elixx1 A * B * w A O B w * A R w w S B
19 2 elixx1 A * B * w A P B w * A T w w U B
20 17 18 19 3imtr4d A * B * w A O B w A P B
21 5 20 mpcom w A O B w A P B
22 21 ssriv A O B A P B