Step |
Hyp |
Ref |
Expression |
1 |
|
ixx.1 |
|- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
2 |
|
ixx.2 |
|- P = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x T z /\ z U y ) } ) |
3 |
|
ixx.3 |
|- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A T w ) ) |
4 |
|
ixx.4 |
|- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w U B ) ) |
5 |
1
|
elmpocl |
|- ( w e. ( A O B ) -> ( A e. RR* /\ B e. RR* ) ) |
6 |
|
simp1 |
|- ( ( w e. RR* /\ A R w /\ w S B ) -> w e. RR* ) |
7 |
6
|
a1i |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> w e. RR* ) ) |
8 |
|
simpl |
|- ( ( A e. RR* /\ B e. RR* ) -> A e. RR* ) |
9 |
|
3simpa |
|- ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ A R w ) ) |
10 |
3
|
expimpd |
|- ( A e. RR* -> ( ( w e. RR* /\ A R w ) -> A T w ) ) |
11 |
8 9 10
|
syl2im |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> A T w ) ) |
12 |
|
simpr |
|- ( ( A e. RR* /\ B e. RR* ) -> B e. RR* ) |
13 |
|
3simpb |
|- ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ w S B ) ) |
14 |
4
|
ancoms |
|- ( ( B e. RR* /\ w e. RR* ) -> ( w S B -> w U B ) ) |
15 |
14
|
expimpd |
|- ( B e. RR* -> ( ( w e. RR* /\ w S B ) -> w U B ) ) |
16 |
12 13 15
|
syl2im |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> w U B ) ) |
17 |
7 11 16
|
3jcad |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( w e. RR* /\ A R w /\ w S B ) -> ( w e. RR* /\ A T w /\ w U B ) ) ) |
18 |
1
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
19 |
2
|
elixx1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A P B ) <-> ( w e. RR* /\ A T w /\ w U B ) ) ) |
20 |
17 18 19
|
3imtr4d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) -> w e. ( A P B ) ) ) |
21 |
5 20
|
mpcom |
|- ( w e. ( A O B ) -> w e. ( A P B ) ) |
22 |
21
|
ssriv |
|- ( A O B ) C_ ( A P B ) |