| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccdificc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | iccdificc.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | iccdificc.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ* ) | 
						
							| 4 |  | iccdificc.4 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 7 |  | iccssxr | ⊢ ( 𝐴 [,] 𝐶 )  ⊆  ℝ* | 
						
							| 8 |  | eldifi | ⊢ ( 𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 9 | 7 8 | sselid | ⊢ ( 𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 11 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝐴  ∈  ℝ* ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝐵  ∈  ℝ* ) | 
						
							| 13 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝑥  ∈  ℝ* ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 15 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 16 |  | iccgelb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐴 [,] 𝐶 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 17 | 14 6 15 16 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝐴  ≤  𝑥 ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  ¬  𝐵  <  𝑥 ) | 
						
							| 20 | 10 5 | xrlenltd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ≤  𝐵  ↔  ¬  𝐵  <  𝑥 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  ( 𝑥  ≤  𝐵  ↔  ¬  𝐵  <  𝑥 ) ) | 
						
							| 22 | 19 21 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝑥  ≤  𝐵 ) | 
						
							| 23 | 11 12 13 18 22 | eliccxrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 24 |  | eldifn | ⊢ ( 𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  →  ¬  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  ∧  ¬  𝐵  <  𝑥 )  →  ¬  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 26 | 23 25 | condan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝐵  <  𝑥 ) | 
						
							| 27 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐴 [,] 𝐶 ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 28 | 14 6 15 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 29 | 5 6 10 26 28 | eliocd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) 𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 31 |  | dfss3 | ⊢ ( ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  ⊆  ( 𝐵 (,] 𝐶 )  ↔  ∀ 𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) 𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 32 | 30 31 | sylibr | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  ⊆  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 33 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 34 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 35 |  | iocssxr | ⊢ ( 𝐵 (,] 𝐶 )  ⊆  ℝ* | 
						
							| 36 |  | id | ⊢ ( 𝑥  ∈  ( 𝐵 (,] 𝐶 )  →  𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 37 | 35 36 | sselid | ⊢ ( 𝑥  ∈  ( 𝐵 (,] 𝐶 )  →  𝑥  ∈  ℝ* ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 39 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 40 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 41 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ∈  ( 𝐵 (,] 𝐶 ) ) | 
						
							| 42 |  | iocgtlb | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐵  <  𝑥 ) | 
						
							| 43 | 39 34 41 42 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐵  <  𝑥 ) | 
						
							| 44 | 33 39 38 40 43 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐴  <  𝑥 ) | 
						
							| 45 | 33 38 44 | xrltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 46 |  | iocleub | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 47 | 39 34 41 46 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ≤  𝐶 ) | 
						
							| 48 | 33 34 38 45 47 | eliccxrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐶 ) ) | 
						
							| 49 | 33 39 38 43 | xrgtnelicc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  ¬  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 50 | 48 49 | eldifd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵 (,] 𝐶 ) )  →  𝑥  ∈  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 51 | 32 50 | eqelssd | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐶 )  ∖  ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵 (,] 𝐶 ) ) |