Metamath Proof Explorer


Theorem xrlenltd

Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrlenltd.a ( 𝜑𝐴 ∈ ℝ* )
xrlenltd.b ( 𝜑𝐵 ∈ ℝ* )
Assertion xrlenltd ( 𝜑 → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xrlenltd.a ( 𝜑𝐴 ∈ ℝ* )
2 xrlenltd.b ( 𝜑𝐵 ∈ ℝ* )
3 xrlenlt ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )