Metamath Proof Explorer
Description: "Less than or equal to" expressed in terms of "less than", for extended
reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrlenltd.a |
|
|
|
xrlenltd.b |
|
|
Assertion |
xrlenltd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrlenltd.a |
|
2 |
|
xrlenltd.b |
|
3 |
|
xrlenlt |
|
4 |
1 2 3
|
syl2anc |
|