Metamath Proof Explorer


Theorem xrlenltd

Description: "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrlenltd.a φA*
xrlenltd.b φB*
Assertion xrlenltd φAB¬B<A

Proof

Step Hyp Ref Expression
1 xrlenltd.a φA*
2 xrlenltd.b φB*
3 xrlenlt A*B*AB¬B<A
4 1 2 3 syl2anc φAB¬B<A