Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eliocd.a | |- ( ph -> A e. RR* ) |
|
| eliocd.b | |- ( ph -> B e. RR* ) |
||
| eliocd.c | |- ( ph -> C e. RR* ) |
||
| eliocd.altc | |- ( ph -> A < C ) |
||
| eliocd.cleb | |- ( ph -> C <_ B ) |
||
| Assertion | eliocd | |- ( ph -> C e. ( A (,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliocd.a | |- ( ph -> A e. RR* ) |
|
| 2 | eliocd.b | |- ( ph -> B e. RR* ) |
|
| 3 | eliocd.c | |- ( ph -> C e. RR* ) |
|
| 4 | eliocd.altc | |- ( ph -> A < C ) |
|
| 5 | eliocd.cleb | |- ( ph -> C <_ B ) |
|
| 6 | elioc1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( C e. ( A (,] B ) <-> ( C e. RR* /\ A < C /\ C <_ B ) ) ) |
| 8 | 3 4 5 7 | mpbir3and | |- ( ph -> C e. ( A (,] B ) ) |