Metamath Proof Explorer


Theorem eliocd

Description: Membership in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses eliocd.a φ A *
eliocd.b φ B *
eliocd.c φ C *
eliocd.altc φ A < C
eliocd.cleb φ C B
Assertion eliocd φ C A B

Proof

Step Hyp Ref Expression
1 eliocd.a φ A *
2 eliocd.b φ B *
3 eliocd.c φ C *
4 eliocd.altc φ A < C
5 eliocd.cleb φ C B
6 elioc1 A * B * C A B C * A < C C B
7 1 2 6 syl2anc φ C A B C * A < C C B
8 3 4 5 7 mpbir3and φ C A B