| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iooiinicc.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | iooiinicc.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 6 |  | ioossre | ⊢ ( ( 𝐴  −  ( 1  /  1 ) ) (,) ( 𝐵  +  ( 1  /  1 ) ) )  ⊆  ℝ | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 1  /  𝑛 )  =  ( 1  /  1 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 𝐴  −  ( 1  /  𝑛 ) )  =  ( 𝐴  −  ( 1  /  1 ) ) ) | 
						
							| 9 | 7 | oveq2d | ⊢ ( 𝑛  =  1  →  ( 𝐵  +  ( 1  /  𝑛 ) )  =  ( 𝐵  +  ( 1  /  1 ) ) ) | 
						
							| 10 | 8 9 | oveq12d | ⊢ ( 𝑛  =  1  →  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  ( ( 𝐴  −  ( 1  /  1 ) ) (,) ( 𝐵  +  ( 1  /  1 ) ) ) ) | 
						
							| 11 | 10 | sseq1d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ  ↔  ( ( 𝐴  −  ( 1  /  1 ) ) (,) ( 𝐵  +  ( 1  /  1 ) ) )  ⊆  ℝ ) ) | 
						
							| 12 | 11 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ( ( 𝐴  −  ( 1  /  1 ) ) (,) ( 𝐵  +  ( 1  /  1 ) ) )  ⊆  ℝ )  →  ∃ 𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 13 | 5 6 12 | mp2an | ⊢ ∃ 𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ | 
						
							| 14 |  | iinss | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ℝ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 18 | 16 17 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 19 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 21 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 22 | 20 21 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 23 | 19 22 | nfan | ⊢ Ⅎ 𝑛 ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 24 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝜑 ) | 
						
							| 25 |  | iinss2 | ⊢ ( 𝑛  ∈  ℕ  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 27 |  | simpl | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 28 | 26 27 | sseldd | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 31 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 33 |  | elioore | ⊢ ( 𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 35 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 37 | 34 36 | readdcld | ⊢ ( ( 𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 38 | 37 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 39 | 35 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 40 | 31 39 | resubcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 41 | 40 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 42 | 41 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 43 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 44 | 43 39 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 45 | 44 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 47 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 48 |  | ioogtlb | ⊢ ( ( ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  <  𝑥 ) | 
						
							| 49 | 42 46 47 48 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  <  𝑥 ) | 
						
							| 50 | 35 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 51 | 34 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 52 | 32 50 51 | ltsubaddd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  −  ( 1  /  𝑛 ) )  <  𝑥  ↔  𝐴  <  ( 𝑥  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 53 | 49 52 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝐴  <  ( 𝑥  +  ( 1  /  𝑛 ) ) ) | 
						
							| 54 | 32 38 53 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝐴  ≤  ( 𝑥  +  ( 1  /  𝑛 ) ) ) | 
						
							| 55 | 24 29 30 54 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝐴  ≤  ( 𝑥  +  ( 1  /  𝑛 ) ) ) | 
						
							| 56 | 55 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝑛  ∈  ℕ  →  𝐴  ≤  ( 𝑥  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 57 | 23 56 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ∀ 𝑛  ∈  ℕ 𝐴  ≤  ( 𝑥  +  ( 1  /  𝑛 ) ) ) | 
						
							| 58 | 3 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 59 | 23 58 18 | xrralrecnnle | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝐴  ≤  𝑥  ↔  ∀ 𝑛  ∈  ℕ 𝐴  ≤  ( 𝑥  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 60 | 57 59 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 61 | 44 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 62 |  | iooltub | ⊢ ( ( ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 63 | 42 46 47 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 64 | 51 61 63 | ltled | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 65 | 24 29 30 64 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝑛  ∈  ℕ  →  𝑥  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 67 | 23 66 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ∀ 𝑛  ∈  ℕ 𝑥  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 68 | 18 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 69 | 23 68 4 | xrralrecnnle | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝑥  ≤  𝐵  ↔  ∀ 𝑛  ∈  ℕ 𝑥  ≤  ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 70 | 67 69 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 71 | 3 4 18 60 70 | eliccd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 72 | 71 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 73 |  | dfss3 | ⊢ ( ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ( 𝐴 [,] 𝐵 )  ↔  ∀ 𝑥  ∈  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 74 | 72 73 | sylibr | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 75 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 76 | 75 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ+ ) | 
						
							| 77 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 78 | 76 77 | rpdivcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 80 | 31 79 | ltsubrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 1  /  𝑛 ) )  <  𝐴 ) | 
						
							| 81 | 43 79 | ltaddrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) | 
						
							| 82 |  | iccssioo | ⊢ ( ( ( ( 𝐴  −  ( 1  /  𝑛 ) )  ∈  ℝ*  ∧  ( 𝐵  +  ( 1  /  𝑛 ) )  ∈  ℝ* )  ∧  ( ( 𝐴  −  ( 1  /  𝑛 ) )  <  𝐴  ∧  𝐵  <  ( 𝐵  +  ( 1  /  𝑛 ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 83 | 41 45 80 81 82 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 84 | 83 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ ( 𝐴 [,] 𝐵 )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 85 |  | ssiin | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  ↔  ∀ 𝑛  ∈  ℕ ( 𝐴 [,] 𝐵 )  ⊆  ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 86 | 84 85 | sylibr | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 87 | 74 86 | eqssd | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ ( ( 𝐴  −  ( 1  /  𝑛 ) ) (,) ( 𝐵  +  ( 1  /  𝑛 ) ) )  =  ( 𝐴 [,] 𝐵 ) ) |