Step |
Hyp |
Ref |
Expression |
1 |
|
salexct2.1 |
|- A = ( 0 [,] 2 ) |
2 |
|
salexct2.2 |
|- S = { x e. ~P A | ( x ~<_ _om \/ ( A \ x ) ~<_ _om ) } |
3 |
|
salexct2.3 |
|- B = ( 0 [,] 1 ) |
4 |
|
0xr |
|- 0 e. RR* |
5 |
4
|
a1i |
|- ( T. -> 0 e. RR* ) |
6 |
|
1xr |
|- 1 e. RR* |
7 |
6
|
a1i |
|- ( T. -> 1 e. RR* ) |
8 |
|
0lt1 |
|- 0 < 1 |
9 |
8
|
a1i |
|- ( T. -> 0 < 1 ) |
10 |
5 7 9 3
|
iccnct |
|- ( T. -> -. B ~<_ _om ) |
11 |
10
|
mptru |
|- -. B ~<_ _om |
12 |
|
2re |
|- 2 e. RR |
13 |
12
|
rexri |
|- 2 e. RR* |
14 |
13
|
a1i |
|- ( T. -> 2 e. RR* ) |
15 |
|
1lt2 |
|- 1 < 2 |
16 |
15
|
a1i |
|- ( T. -> 1 < 2 ) |
17 |
|
eqid |
|- ( 1 (,] 2 ) = ( 1 (,] 2 ) |
18 |
7 14 16 17
|
iocnct |
|- ( T. -> -. ( 1 (,] 2 ) ~<_ _om ) |
19 |
18
|
mptru |
|- -. ( 1 (,] 2 ) ~<_ _om |
20 |
1 3
|
difeq12i |
|- ( A \ B ) = ( ( 0 [,] 2 ) \ ( 0 [,] 1 ) ) |
21 |
5 7 9
|
xrltled |
|- ( T. -> 0 <_ 1 ) |
22 |
5 7 14 21
|
iccdificc |
|- ( T. -> ( ( 0 [,] 2 ) \ ( 0 [,] 1 ) ) = ( 1 (,] 2 ) ) |
23 |
22
|
mptru |
|- ( ( 0 [,] 2 ) \ ( 0 [,] 1 ) ) = ( 1 (,] 2 ) |
24 |
20 23
|
eqtri |
|- ( A \ B ) = ( 1 (,] 2 ) |
25 |
24
|
breq1i |
|- ( ( A \ B ) ~<_ _om <-> ( 1 (,] 2 ) ~<_ _om ) |
26 |
19 25
|
mtbir |
|- -. ( A \ B ) ~<_ _om |
27 |
11 26
|
pm3.2i |
|- ( -. B ~<_ _om /\ -. ( A \ B ) ~<_ _om ) |
28 |
|
ioran |
|- ( -. ( B ~<_ _om \/ ( A \ B ) ~<_ _om ) <-> ( -. B ~<_ _om /\ -. ( A \ B ) ~<_ _om ) ) |
29 |
27 28
|
mpbir |
|- -. ( B ~<_ _om \/ ( A \ B ) ~<_ _om ) |
30 |
29
|
intnan |
|- -. ( B e. ~P A /\ ( B ~<_ _om \/ ( A \ B ) ~<_ _om ) ) |
31 |
|
breq1 |
|- ( x = B -> ( x ~<_ _om <-> B ~<_ _om ) ) |
32 |
|
difeq2 |
|- ( x = B -> ( A \ x ) = ( A \ B ) ) |
33 |
32
|
breq1d |
|- ( x = B -> ( ( A \ x ) ~<_ _om <-> ( A \ B ) ~<_ _om ) ) |
34 |
31 33
|
orbi12d |
|- ( x = B -> ( ( x ~<_ _om \/ ( A \ x ) ~<_ _om ) <-> ( B ~<_ _om \/ ( A \ B ) ~<_ _om ) ) ) |
35 |
34 2
|
elrab2 |
|- ( B e. S <-> ( B e. ~P A /\ ( B ~<_ _om \/ ( A \ B ) ~<_ _om ) ) ) |
36 |
30 35
|
mtbir |
|- -. B e. S |