Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unisalgen.x | |- ( ph -> X e. V ) | |
| unisalgen.s | |- S = ( SalGen ` X ) | ||
| unisalgen.u | |- U = U. X | ||
| Assertion | unisalgen | |- ( ph -> U e. S ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unisalgen.x | |- ( ph -> X e. V ) | |
| 2 | unisalgen.s | |- S = ( SalGen ` X ) | |
| 3 | unisalgen.u | |- U = U. X | |
| 4 | 1 2 3 | salgenuni | |- ( ph -> U. S = U ) | 
| 5 | 4 | eqcomd | |- ( ph -> U = U. S ) | 
| 6 | 2 | a1i | |- ( ph -> S = ( SalGen ` X ) ) | 
| 7 | salgencl | |- ( X e. V -> ( SalGen ` X ) e. SAlg ) | |
| 8 | 1 7 | syl | |- ( ph -> ( SalGen ` X ) e. SAlg ) | 
| 9 | 6 8 | eqeltrd | |- ( ph -> S e. SAlg ) | 
| 10 | saluni | |- ( S e. SAlg -> U. S e. S ) | |
| 11 | 9 10 | syl | |- ( ph -> U. S e. S ) | 
| 12 | 5 11 | eqeltrd | |- ( ph -> U e. S ) |