Metamath Proof Explorer


Theorem unisalgen

Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses unisalgen.x
|- ( ph -> X e. V )
unisalgen.s
|- S = ( SalGen ` X )
unisalgen.u
|- U = U. X
Assertion unisalgen
|- ( ph -> U e. S )

Proof

Step Hyp Ref Expression
1 unisalgen.x
 |-  ( ph -> X e. V )
2 unisalgen.s
 |-  S = ( SalGen ` X )
3 unisalgen.u
 |-  U = U. X
4 1 2 3 salgenuni
 |-  ( ph -> U. S = U )
5 4 eqcomd
 |-  ( ph -> U = U. S )
6 2 a1i
 |-  ( ph -> S = ( SalGen ` X ) )
7 salgencl
 |-  ( X e. V -> ( SalGen ` X ) e. SAlg )
8 1 7 syl
 |-  ( ph -> ( SalGen ` X ) e. SAlg )
9 6 8 eqeltrd
 |-  ( ph -> S e. SAlg )
10 saluni
 |-  ( S e. SAlg -> U. S e. S )
11 9 10 syl
 |-  ( ph -> U. S e. S )
12 5 11 eqeltrd
 |-  ( ph -> U e. S )