Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unisalgen.x | |- ( ph -> X e. V ) |
|
unisalgen.s | |- S = ( SalGen ` X ) |
||
unisalgen.u | |- U = U. X |
||
Assertion | unisalgen | |- ( ph -> U e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisalgen.x | |- ( ph -> X e. V ) |
|
2 | unisalgen.s | |- S = ( SalGen ` X ) |
|
3 | unisalgen.u | |- U = U. X |
|
4 | 1 2 3 | salgenuni | |- ( ph -> U. S = U ) |
5 | 4 | eqcomd | |- ( ph -> U = U. S ) |
6 | 2 | a1i | |- ( ph -> S = ( SalGen ` X ) ) |
7 | salgencl | |- ( X e. V -> ( SalGen ` X ) e. SAlg ) |
|
8 | 1 7 | syl | |- ( ph -> ( SalGen ` X ) e. SAlg ) |
9 | 6 8 | eqeltrd | |- ( ph -> S e. SAlg ) |
10 | saluni | |- ( S e. SAlg -> U. S e. S ) |
|
11 | 9 10 | syl | |- ( ph -> U. S e. S ) |
12 | 5 11 | eqeltrd | |- ( ph -> U e. S ) |