Metamath Proof Explorer


Theorem unisalgen

Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses unisalgen.x ( 𝜑𝑋𝑉 )
unisalgen.s 𝑆 = ( SalGen ‘ 𝑋 )
unisalgen.u 𝑈 = 𝑋
Assertion unisalgen ( 𝜑𝑈𝑆 )

Proof

Step Hyp Ref Expression
1 unisalgen.x ( 𝜑𝑋𝑉 )
2 unisalgen.s 𝑆 = ( SalGen ‘ 𝑋 )
3 unisalgen.u 𝑈 = 𝑋
4 1 2 3 salgenuni ( 𝜑 𝑆 = 𝑈 )
5 4 eqcomd ( 𝜑𝑈 = 𝑆 )
6 2 a1i ( 𝜑𝑆 = ( SalGen ‘ 𝑋 ) )
7 salgencl ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
8 1 7 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
9 6 8 eqeltrd ( 𝜑𝑆 ∈ SAlg )
10 saluni ( 𝑆 ∈ SAlg → 𝑆𝑆 )
11 9 10 syl ( 𝜑 𝑆𝑆 )
12 5 11 eqeltrd ( 𝜑𝑈𝑆 )