Metamath Proof Explorer
		
		
		
		Description:  The union of a set belongs to the sigma-algebra generated by the set.
       (Contributed by Glauco Siliprandi, 3-Jan-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | unisalgen.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
					
						|  |  | unisalgen.s | ⊢ 𝑆  =  ( SalGen ‘ 𝑋 ) | 
					
						|  |  | unisalgen.u | ⊢ 𝑈  =  ∪  𝑋 | 
				
					|  | Assertion | unisalgen | ⊢  ( 𝜑  →  𝑈  ∈  𝑆 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unisalgen.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | unisalgen.s | ⊢ 𝑆  =  ( SalGen ‘ 𝑋 ) | 
						
							| 3 |  | unisalgen.u | ⊢ 𝑈  =  ∪  𝑋 | 
						
							| 4 | 1 2 3 | salgenuni | ⊢ ( 𝜑  →  ∪  𝑆  =  𝑈 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝜑  →  𝑈  =  ∪  𝑆 ) | 
						
							| 6 | 2 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 7 |  | salgencl | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 9 | 6 8 | eqeltrd | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 10 |  | saluni | ⊢ ( 𝑆  ∈  SAlg  →  ∪  𝑆  ∈  𝑆 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ∪  𝑆  ∈  𝑆 ) | 
						
							| 12 | 5 11 | eqeltrd | ⊢ ( 𝜑  →  𝑈  ∈  𝑆 ) |