Metamath Proof Explorer
Description: The union of a set belongs to the sigma-algebra generated by the set.
(Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
unisalgen.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
|
unisalgen.s |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
|
|
unisalgen.u |
⊢ 𝑈 = ∪ 𝑋 |
|
Assertion |
unisalgen |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
unisalgen.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
unisalgen.s |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
3 |
|
unisalgen.u |
⊢ 𝑈 = ∪ 𝑋 |
4 |
1 2 3
|
salgenuni |
⊢ ( 𝜑 → ∪ 𝑆 = 𝑈 ) |
5 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝑈 = ∪ 𝑆 ) |
6 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
7 |
|
salgencl |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
9 |
6 8
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
10 |
|
saluni |
⊢ ( 𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ∪ 𝑆 ∈ 𝑆 ) |
12 |
5 11
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |