Metamath Proof Explorer
Description: The union of a set belongs to the sigma-algebra generated by the set.
(Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
unisalgen.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
|
unisalgen.s |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
|
|
unisalgen.u |
⊢ 𝑈 = ∪ 𝑋 |
|
Assertion |
unisalgen |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unisalgen.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
unisalgen.s |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
| 3 |
|
unisalgen.u |
⊢ 𝑈 = ∪ 𝑋 |
| 4 |
1 2 3
|
salgenuni |
⊢ ( 𝜑 → ∪ 𝑆 = 𝑈 ) |
| 5 |
4
|
eqcomd |
⊢ ( 𝜑 → 𝑈 = ∪ 𝑆 ) |
| 6 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
| 7 |
|
salgencl |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
| 9 |
6 8
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 10 |
|
saluni |
⊢ ( 𝑆 ∈ SAlg → ∪ 𝑆 ∈ 𝑆 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ∪ 𝑆 ∈ 𝑆 ) |
| 12 |
5 11
|
eqeltrd |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |