Step |
Hyp |
Ref |
Expression |
1 |
|
dfsalgen2.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
id |
⊢ ( ( SalGen ‘ 𝑋 ) = 𝑆 → ( SalGen ‘ 𝑋 ) = 𝑆 ) |
3 |
2
|
eqcomd |
⊢ ( ( SalGen ‘ 𝑋 ) = 𝑆 → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
5 |
|
salgencl |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) ∈ SAlg ) |
8 |
4 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑆 ∈ SAlg ) |
9 |
|
unieq |
⊢ ( ( SalGen ‘ 𝑋 ) = 𝑆 → ∪ ( SalGen ‘ 𝑋 ) = ∪ 𝑆 ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ∪ ( SalGen ‘ 𝑋 ) = ∪ 𝑆 ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋 ∈ 𝑉 ) |
12 |
|
eqid |
⊢ ( SalGen ‘ 𝑋 ) = ( SalGen ‘ 𝑋 ) |
13 |
|
eqid |
⊢ ∪ 𝑋 = ∪ 𝑋 |
14 |
11 12 13
|
salgenuni |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ∪ ( SalGen ‘ 𝑋 ) = ∪ 𝑋 ) |
15 |
10 14
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ∪ 𝑆 = ∪ 𝑋 ) |
16 |
12
|
sssalgen |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ ( SalGen ‘ 𝑋 ) ) |
17 |
11 16
|
syl |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋 ⊆ ( SalGen ‘ 𝑋 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) = 𝑆 ) |
19 |
17 18
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋 ⊆ 𝑆 ) |
20 |
8 15 19
|
3jca |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) |
21 |
4
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
22 |
21
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
23 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑋 ∈ 𝑉 ) |
24 |
23
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑋 ∈ 𝑉 ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑦 ∈ SAlg ) |
26 |
25
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑦 ∈ SAlg ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋 ⊆ 𝑦 ) → 𝑋 ⊆ 𝑦 ) |
28 |
27
|
adantrl |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑋 ⊆ 𝑦 ) |
29 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → ∪ 𝑦 = ∪ 𝑋 ) |
30 |
24 12 26 28 29
|
salgenss |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → ( SalGen ‘ 𝑋 ) ⊆ 𝑦 ) |
31 |
22 30
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑆 ⊆ 𝑦 ) |
32 |
31
|
ex |
⊢ ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) → ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) |
34 |
20 33
|
jca |
⊢ ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( ( SalGen ‘ 𝑋 ) = 𝑆 → ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) ) |
36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) → 𝑋 ∈ 𝑉 ) |
37 |
|
simprl1 |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) → 𝑆 ∈ SAlg ) |
38 |
|
simprl2 |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) → ∪ 𝑆 = ∪ 𝑋 ) |
39 |
|
simprl3 |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) → 𝑋 ⊆ 𝑆 ) |
40 |
|
unieq |
⊢ ( 𝑦 = 𝑤 → ∪ 𝑦 = ∪ 𝑤 ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑦 = 𝑤 → ( ∪ 𝑦 = ∪ 𝑋 ↔ ∪ 𝑤 = ∪ 𝑋 ) ) |
42 |
|
sseq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝑤 ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ↔ ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) ) |
44 |
|
sseq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑆 ⊆ 𝑦 ↔ 𝑆 ⊆ 𝑤 ) ) |
45 |
43 44
|
imbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ↔ ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ) ) |
46 |
45
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ↔ ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ) |
47 |
46
|
biimpi |
⊢ ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) → ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ) |
48 |
47
|
adantr |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ 𝑤 ∈ SAlg ) → ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ) |
49 |
|
simpr |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ 𝑤 ∈ SAlg ) → 𝑤 ∈ SAlg ) |
50 |
48 49
|
jca |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ 𝑤 ∈ SAlg ) → ( ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ∧ 𝑤 ∈ SAlg ) ) |
51 |
50
|
3ad2antr1 |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) → ( ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ∧ 𝑤 ∈ SAlg ) ) |
52 |
|
3simpc |
⊢ ( ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) |
53 |
52
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) → ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) |
54 |
|
rspa |
⊢ ( ( ∀ 𝑤 ∈ SAlg ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ∧ 𝑤 ∈ SAlg ) → ( ( ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) → 𝑆 ⊆ 𝑤 ) ) |
55 |
51 53 54
|
sylc |
⊢ ( ( ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) → 𝑆 ⊆ 𝑤 ) |
56 |
55
|
adantll |
⊢ ( ( ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ∧ ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) → 𝑆 ⊆ 𝑤 ) |
57 |
56
|
adantll |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) ∧ ( 𝑤 ∈ SAlg ∧ ∪ 𝑤 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑤 ) ) → 𝑆 ⊆ 𝑤 ) |
58 |
36 37 38 39 57
|
issalgend |
⊢ ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) → ( SalGen ‘ 𝑋 ) = 𝑆 ) |
59 |
58
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) → ( SalGen ‘ 𝑋 ) = 𝑆 ) ) |
60 |
35 59
|
impbid |
⊢ ( 𝜑 → ( ( SalGen ‘ 𝑋 ) = 𝑆 ↔ ( ( 𝑆 ∈ SAlg ∧ ∪ 𝑆 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) → 𝑆 ⊆ 𝑦 ) ) ) ) |