Metamath Proof Explorer


Theorem dfsalgen2

Description: Alternate characterization of the sigma-algebra generated by a set. It is the smallest sigma-algebra, on the same base set, that includes the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis dfsalgen2.1 ( 𝜑𝑋𝑉 )
Assertion dfsalgen2 ( 𝜑 → ( ( SalGen ‘ 𝑋 ) = 𝑆 ↔ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 dfsalgen2.1 ( 𝜑𝑋𝑉 )
2 id ( ( SalGen ‘ 𝑋 ) = 𝑆 → ( SalGen ‘ 𝑋 ) = 𝑆 )
3 2 eqcomd ( ( SalGen ‘ 𝑋 ) = 𝑆𝑆 = ( SalGen ‘ 𝑋 ) )
4 3 adantl ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑆 = ( SalGen ‘ 𝑋 ) )
5 salgencl ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
6 1 5 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) ∈ SAlg )
7 6 adantr ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) ∈ SAlg )
8 4 7 eqeltrd ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑆 ∈ SAlg )
9 unieq ( ( SalGen ‘ 𝑋 ) = 𝑆 ( SalGen ‘ 𝑋 ) = 𝑆 )
10 9 adantl ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) = 𝑆 )
11 1 adantr ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋𝑉 )
12 eqid ( SalGen ‘ 𝑋 ) = ( SalGen ‘ 𝑋 )
13 eqid 𝑋 = 𝑋
14 11 12 13 salgenuni ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) = 𝑋 )
15 10 14 eqtr3d ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑆 = 𝑋 )
16 12 sssalgen ( 𝑋𝑉𝑋 ⊆ ( SalGen ‘ 𝑋 ) )
17 11 16 syl ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋 ⊆ ( SalGen ‘ 𝑋 ) )
18 simpr ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( SalGen ‘ 𝑋 ) = 𝑆 )
19 17 18 sseqtrd ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → 𝑋𝑆 )
20 8 15 19 3jca ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) )
21 4 ad2antrr ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋𝑦 ) → 𝑆 = ( SalGen ‘ 𝑋 ) )
22 21 adantrl ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑆 = ( SalGen ‘ 𝑋 ) )
23 11 ad2antrr ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋𝑦 ) → 𝑋𝑉 )
24 23 adantrl ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑋𝑉 )
25 simplr ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋𝑦 ) → 𝑦 ∈ SAlg )
26 25 adantrl ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑦 ∈ SAlg )
27 simpr ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ 𝑋𝑦 ) → 𝑋𝑦 )
28 27 adantrl ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑋𝑦 )
29 simprl ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑦 = 𝑋 )
30 24 12 26 28 29 salgenss ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → ( SalGen ‘ 𝑋 ) ⊆ 𝑦 )
31 22 30 eqsstrd ( ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑆𝑦 )
32 31 ex ( ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) ∧ 𝑦 ∈ SAlg ) → ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) )
33 32 ralrimiva ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) )
34 20 33 jca ( ( 𝜑 ∧ ( SalGen ‘ 𝑋 ) = 𝑆 ) → ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) )
35 34 ex ( 𝜑 → ( ( SalGen ‘ 𝑋 ) = 𝑆 → ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) )
36 1 adantr ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) → 𝑋𝑉 )
37 simprl1 ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) → 𝑆 ∈ SAlg )
38 simprl2 ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) → 𝑆 = 𝑋 )
39 simprl3 ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) → 𝑋𝑆 )
40 unieq ( 𝑦 = 𝑤 𝑦 = 𝑤 )
41 40 eqeq1d ( 𝑦 = 𝑤 → ( 𝑦 = 𝑋 𝑤 = 𝑋 ) )
42 sseq2 ( 𝑦 = 𝑤 → ( 𝑋𝑦𝑋𝑤 ) )
43 41 42 anbi12d ( 𝑦 = 𝑤 → ( ( 𝑦 = 𝑋𝑋𝑦 ) ↔ ( 𝑤 = 𝑋𝑋𝑤 ) ) )
44 sseq2 ( 𝑦 = 𝑤 → ( 𝑆𝑦𝑆𝑤 ) )
45 43 44 imbi12d ( 𝑦 = 𝑤 → ( ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ↔ ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) ) )
46 45 cbvralvw ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ↔ ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) )
47 46 biimpi ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) → ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) )
48 47 adantr ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ 𝑤 ∈ SAlg ) → ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) )
49 simpr ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ 𝑤 ∈ SAlg ) → 𝑤 ∈ SAlg )
50 48 49 jca ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ 𝑤 ∈ SAlg ) → ( ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) ∧ 𝑤 ∈ SAlg ) )
51 50 3ad2antr1 ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) ) → ( ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) ∧ 𝑤 ∈ SAlg ) )
52 3simpc ( ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) → ( 𝑤 = 𝑋𝑋𝑤 ) )
53 52 adantl ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) ) → ( 𝑤 = 𝑋𝑋𝑤 ) )
54 rspa ( ( ∀ 𝑤 ∈ SAlg ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) ∧ 𝑤 ∈ SAlg ) → ( ( 𝑤 = 𝑋𝑋𝑤 ) → 𝑆𝑤 ) )
55 51 53 54 sylc ( ( ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ∧ ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) ) → 𝑆𝑤 )
56 55 adantll ( ( ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ∧ ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) ) → 𝑆𝑤 )
57 56 adantll ( ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) ∧ ( 𝑤 ∈ SAlg ∧ 𝑤 = 𝑋𝑋𝑤 ) ) → 𝑆𝑤 )
58 36 37 38 39 57 issalgend ( ( 𝜑 ∧ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) → ( SalGen ‘ 𝑋 ) = 𝑆 )
59 58 ex ( 𝜑 → ( ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) → ( SalGen ‘ 𝑋 ) = 𝑆 ) )
60 35 59 impbid ( 𝜑 → ( ( SalGen ‘ 𝑋 ) = 𝑆 ↔ ( ( 𝑆 ∈ SAlg ∧ 𝑆 = 𝑋𝑋𝑆 ) ∧ ∀ 𝑦 ∈ SAlg ( ( 𝑦 = 𝑋𝑋𝑦 ) → 𝑆𝑦 ) ) ) )