| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsalgen2.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | id | ⊢ ( ( SalGen ‘ 𝑋 )  =  𝑆  →  ( SalGen ‘ 𝑋 )  =  𝑆 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( ( SalGen ‘ 𝑋 )  =  𝑆  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 5 |  | salgencl | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ( SalGen ‘ 𝑋 )  ∈  SAlg ) | 
						
							| 8 | 4 7 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  𝑆  ∈  SAlg ) | 
						
							| 9 |  | unieq | ⊢ ( ( SalGen ‘ 𝑋 )  =  𝑆  →  ∪  ( SalGen ‘ 𝑋 )  =  ∪  𝑆 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ∪  ( SalGen ‘ 𝑋 )  =  ∪  𝑆 ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | eqid | ⊢ ( SalGen ‘ 𝑋 )  =  ( SalGen ‘ 𝑋 ) | 
						
							| 13 |  | eqid | ⊢ ∪  𝑋  =  ∪  𝑋 | 
						
							| 14 | 11 12 13 | salgenuni | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ∪  ( SalGen ‘ 𝑋 )  =  ∪  𝑋 ) | 
						
							| 15 | 10 14 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ∪  𝑆  =  ∪  𝑋 ) | 
						
							| 16 | 12 | sssalgen | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ⊆  ( SalGen ‘ 𝑋 ) ) | 
						
							| 17 | 11 16 | syl | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  𝑋  ⊆  ( SalGen ‘ 𝑋 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ( SalGen ‘ 𝑋 )  =  𝑆 ) | 
						
							| 19 | 17 18 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  𝑋  ⊆  𝑆 ) | 
						
							| 20 | 8 15 19 | 3jca | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 ) ) | 
						
							| 21 | 4 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  𝑋  ⊆  𝑦 )  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 22 | 21 | adantrl | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 23 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  𝑋  ⊆  𝑦 )  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 23 | adantrl | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 25 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  𝑋  ⊆  𝑦 )  →  𝑦  ∈  SAlg ) | 
						
							| 26 | 25 | adantrl | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑦  ∈  SAlg ) | 
						
							| 27 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  𝑋  ⊆  𝑦 )  →  𝑋  ⊆  𝑦 ) | 
						
							| 28 | 27 | adantrl | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑋  ⊆  𝑦 ) | 
						
							| 29 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  ∪  𝑦  =  ∪  𝑋 ) | 
						
							| 30 | 24 12 26 28 29 | salgenss | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  ( SalGen ‘ 𝑋 )  ⊆  𝑦 ) | 
						
							| 31 | 22 30 | eqsstrd | ⊢ ( ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑆  ⊆  𝑦 ) | 
						
							| 32 | 31 | ex | ⊢ ( ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  ∧  𝑦  ∈  SAlg )  →  ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) | 
						
							| 34 | 20 33 | jca | ⊢ ( ( 𝜑  ∧  ( SalGen ‘ 𝑋 )  =  𝑆 )  →  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝜑  →  ( ( SalGen ‘ 𝑋 )  =  𝑆  →  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) ) ) | 
						
							| 36 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 37 |  | simprl1 | ⊢ ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  →  𝑆  ∈  SAlg ) | 
						
							| 38 |  | simprl2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  →  ∪  𝑆  =  ∪  𝑋 ) | 
						
							| 39 |  | simprl3 | ⊢ ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  →  𝑋  ⊆  𝑆 ) | 
						
							| 40 |  | unieq | ⊢ ( 𝑦  =  𝑤  →  ∪  𝑦  =  ∪  𝑤 ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑦  =  𝑤  →  ( ∪  𝑦  =  ∪  𝑋  ↔  ∪  𝑤  =  ∪  𝑋 ) ) | 
						
							| 42 |  | sseq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑋  ⊆  𝑦  ↔  𝑋  ⊆  𝑤 ) ) | 
						
							| 43 | 41 42 | anbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  ↔  ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) ) ) | 
						
							| 44 |  | sseq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑆  ⊆  𝑦  ↔  𝑆  ⊆  𝑤 ) ) | 
						
							| 45 | 43 44 | imbi12d | ⊢ ( 𝑦  =  𝑤  →  ( ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ↔  ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 ) ) ) | 
						
							| 46 | 45 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ↔  ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 ) ) | 
						
							| 47 | 46 | biimpi | ⊢ ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  →  ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  𝑤  ∈  SAlg )  →  ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 ) ) | 
						
							| 49 |  | simpr | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  𝑤  ∈  SAlg )  →  𝑤  ∈  SAlg ) | 
						
							| 50 | 48 49 | jca | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  𝑤  ∈  SAlg )  →  ( ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 )  ∧  𝑤  ∈  SAlg ) ) | 
						
							| 51 | 50 | 3ad2antr1 | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) )  →  ( ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 )  ∧  𝑤  ∈  SAlg ) ) | 
						
							| 52 |  | 3simpc | ⊢ ( ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) )  →  ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) ) | 
						
							| 54 |  | rspa | ⊢ ( ( ∀ 𝑤  ∈  SAlg ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 )  ∧  𝑤  ∈  SAlg )  →  ( ( ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 )  →  𝑆  ⊆  𝑤 ) ) | 
						
							| 55 | 51 53 54 | sylc | ⊢ ( ( ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 )  ∧  ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) )  →  𝑆  ⊆  𝑤 ) | 
						
							| 56 | 55 | adantll | ⊢ ( ( ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) )  ∧  ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) )  →  𝑆  ⊆  𝑤 ) | 
						
							| 57 | 56 | adantll | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  ∧  ( 𝑤  ∈  SAlg  ∧  ∪  𝑤  =  ∪  𝑋  ∧  𝑋  ⊆  𝑤 ) )  →  𝑆  ⊆  𝑤 ) | 
						
							| 58 | 36 37 38 39 57 | issalgend | ⊢ ( ( 𝜑  ∧  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) )  →  ( SalGen ‘ 𝑋 )  =  𝑆 ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) )  →  ( SalGen ‘ 𝑋 )  =  𝑆 ) ) | 
						
							| 60 | 35 59 | impbid | ⊢ ( 𝜑  →  ( ( SalGen ‘ 𝑋 )  =  𝑆  ↔  ( ( 𝑆  ∈  SAlg  ∧  ∪  𝑆  =  ∪  𝑋  ∧  𝑋  ⊆  𝑆 )  ∧  ∀ 𝑦  ∈  SAlg ( ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 )  →  𝑆  ⊆  𝑦 ) ) ) ) |