Metamath Proof Explorer


Theorem salexct3

Description: An example of a sigma-algebra that's not closed under uncountable union. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salexct3.a 𝐴 = ( 0 [,] 2 )
salexct3.s 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
salexct3.x 𝑋 = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } )
Assertion salexct3 ( 𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆 )

Proof

Step Hyp Ref Expression
1 salexct3.a 𝐴 = ( 0 [,] 2 )
2 salexct3.s 𝑆 = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) }
3 salexct3.x 𝑋 = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } )
4 ovex ( 0 [,] 2 ) ∈ V
5 1 4 eqeltri 𝐴 ∈ V
6 5 a1i ( ⊤ → 𝐴 ∈ V )
7 6 2 salexct ( ⊤ → 𝑆 ∈ SAlg )
8 7 mptru 𝑆 ∈ SAlg
9 0re 0 ∈ ℝ
10 2re 2 ∈ ℝ
11 9 10 pm3.2i ( 0 ∈ ℝ ∧ 2 ∈ ℝ )
12 9 leidi 0 ≤ 0
13 1le2 1 ≤ 2
14 12 13 pm3.2i ( 0 ≤ 0 ∧ 1 ≤ 2 )
15 iccss ( ( ( 0 ∈ ℝ ∧ 2 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ 1 ≤ 2 ) ) → ( 0 [,] 1 ) ⊆ ( 0 [,] 2 ) )
16 11 14 15 mp2an ( 0 [,] 1 ) ⊆ ( 0 [,] 2 )
17 id ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ( 0 [,] 1 ) )
18 16 17 sseldi ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦 ∈ ( 0 [,] 2 ) )
19 18 1 eleqtrrdi ( 𝑦 ∈ ( 0 [,] 1 ) → 𝑦𝐴 )
20 snelpwi ( 𝑦𝐴 → { 𝑦 } ∈ 𝒫 𝐴 )
21 19 20 syl ( 𝑦 ∈ ( 0 [,] 1 ) → { 𝑦 } ∈ 𝒫 𝐴 )
22 snfi { 𝑦 } ∈ Fin
23 fict ( { 𝑦 } ∈ Fin → { 𝑦 } ≼ ω )
24 22 23 ax-mp { 𝑦 } ≼ ω
25 orc ( { 𝑦 } ≼ ω → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
26 24 25 ax-mp ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω )
27 26 a1i ( 𝑦 ∈ ( 0 [,] 1 ) → ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
28 21 27 jca ( 𝑦 ∈ ( 0 [,] 1 ) → ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
29 breq1 ( 𝑥 = { 𝑦 } → ( 𝑥 ≼ ω ↔ { 𝑦 } ≼ ω ) )
30 difeq2 ( 𝑥 = { 𝑦 } → ( 𝐴𝑥 ) = ( 𝐴 ∖ { 𝑦 } ) )
31 30 breq1d ( 𝑥 = { 𝑦 } → ( ( 𝐴𝑥 ) ≼ ω ↔ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) )
32 29 31 orbi12d ( 𝑥 = { 𝑦 } → ( ( 𝑥 ≼ ω ∨ ( 𝐴𝑥 ) ≼ ω ) ↔ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
33 32 2 elrab2 ( { 𝑦 } ∈ 𝑆 ↔ ( { 𝑦 } ∈ 𝒫 𝐴 ∧ ( { 𝑦 } ≼ ω ∨ ( 𝐴 ∖ { 𝑦 } ) ≼ ω ) ) )
34 28 33 sylibr ( 𝑦 ∈ ( 0 [,] 1 ) → { 𝑦 } ∈ 𝑆 )
35 34 rgen 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ 𝑆
36 eqid ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) = ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } )
37 36 rnmptss ( ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ 𝑆 → ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ⊆ 𝑆 )
38 35 37 ax-mp ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) ⊆ 𝑆
39 3 38 eqsstri 𝑋𝑆
40 3 unieqi 𝑋 = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } )
41 snex { 𝑦 } ∈ V
42 41 rgenw 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ V
43 dfiun3g ( ∀ 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } ∈ V → 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) )
44 42 43 ax-mp 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } )
45 44 eqcomi ran ( 𝑦 ∈ ( 0 [,] 1 ) ↦ { 𝑦 } ) = 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 }
46 iunid 𝑦 ∈ ( 0 [,] 1 ) { 𝑦 } = ( 0 [,] 1 )
47 40 45 46 3eqtrri ( 0 [,] 1 ) = 𝑋
48 47 eqcomi 𝑋 = ( 0 [,] 1 )
49 1 2 48 salexct2 ¬ 𝑋𝑆
50 8 39 49 3pm3.2i ( 𝑆 ∈ SAlg ∧ 𝑋𝑆 ∧ ¬ 𝑋𝑆 )