| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salexct3.a | ⊢ 𝐴  =  ( 0 [,] 2 ) | 
						
							| 2 |  | salexct3.s | ⊢ 𝑆  =  { 𝑥  ∈  𝒫  𝐴  ∣  ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω ) } | 
						
							| 3 |  | salexct3.x | ⊢ 𝑋  =  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } ) | 
						
							| 4 |  | ovex | ⊢ ( 0 [,] 2 )  ∈  V | 
						
							| 5 | 1 4 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( ⊤  →  𝐴  ∈  V ) | 
						
							| 7 | 6 2 | salexct | ⊢ ( ⊤  →  𝑆  ∈  SAlg ) | 
						
							| 8 | 7 | mptru | ⊢ 𝑆  ∈  SAlg | 
						
							| 9 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 10 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 0  ∈  ℝ  ∧  2  ∈  ℝ ) | 
						
							| 12 | 9 | leidi | ⊢ 0  ≤  0 | 
						
							| 13 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 14 | 12 13 | pm3.2i | ⊢ ( 0  ≤  0  ∧  1  ≤  2 ) | 
						
							| 15 |  | iccss | ⊢ ( ( ( 0  ∈  ℝ  ∧  2  ∈  ℝ )  ∧  ( 0  ≤  0  ∧  1  ≤  2 ) )  →  ( 0 [,] 1 )  ⊆  ( 0 [,] 2 ) ) | 
						
							| 16 | 11 14 15 | mp2an | ⊢ ( 0 [,] 1 )  ⊆  ( 0 [,] 2 ) | 
						
							| 17 |  | id | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  𝑦  ∈  ( 0 [,] 1 ) ) | 
						
							| 18 | 16 17 | sselid | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  𝑦  ∈  ( 0 [,] 2 ) ) | 
						
							| 19 | 18 1 | eleqtrrdi | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  𝑦  ∈  𝐴 ) | 
						
							| 20 |  | snelpwi | ⊢ ( 𝑦  ∈  𝐴  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  { 𝑦 }  ∈  𝒫  𝐴 ) | 
						
							| 22 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 23 |  | fict | ⊢ ( { 𝑦 }  ∈  Fin  →  { 𝑦 }  ≼  ω ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ { 𝑦 }  ≼  ω | 
						
							| 25 |  | orc | ⊢ ( { 𝑦 }  ≼  ω  →  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 28 | 21 27 | jca | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 29 |  | breq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ≼  ω  ↔  { 𝑦 }  ≼  ω ) ) | 
						
							| 30 |  | difeq2 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  { 𝑦 } ) ) | 
						
							| 31 | 30 | breq1d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝐴  ∖  𝑥 )  ≼  ω  ↔  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) | 
						
							| 32 | 29 31 | orbi12d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝑥  ≼  ω  ∨  ( 𝐴  ∖  𝑥 )  ≼  ω )  ↔  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 33 | 32 2 | elrab2 | ⊢ ( { 𝑦 }  ∈  𝑆  ↔  ( { 𝑦 }  ∈  𝒫  𝐴  ∧  ( { 𝑦 }  ≼  ω  ∨  ( 𝐴  ∖  { 𝑦 } )  ≼  ω ) ) ) | 
						
							| 34 | 28 33 | sylibr | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  →  { 𝑦 }  ∈  𝑆 ) | 
						
							| 35 | 34 | rgen | ⊢ ∀ 𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  ∈  𝑆 | 
						
							| 36 |  | eqid | ⊢ ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } )  =  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } ) | 
						
							| 37 | 36 | rnmptss | ⊢ ( ∀ 𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  ∈  𝑆  →  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } )  ⊆  𝑆 ) | 
						
							| 38 | 35 37 | ax-mp | ⊢ ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } )  ⊆  𝑆 | 
						
							| 39 | 3 38 | eqsstri | ⊢ 𝑋  ⊆  𝑆 | 
						
							| 40 | 3 | unieqi | ⊢ ∪  𝑋  =  ∪  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } ) | 
						
							| 41 |  | vsnex | ⊢ { 𝑦 }  ∈  V | 
						
							| 42 | 41 | rgenw | ⊢ ∀ 𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  ∈  V | 
						
							| 43 |  | dfiun3g | ⊢ ( ∀ 𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  ∈  V  →  ∪  𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  =  ∪  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } ) ) | 
						
							| 44 | 42 43 | ax-mp | ⊢ ∪  𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  =  ∪  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } ) | 
						
							| 45 | 44 | eqcomi | ⊢ ∪  ran  ( 𝑦  ∈  ( 0 [,] 1 )  ↦  { 𝑦 } )  =  ∪  𝑦  ∈  ( 0 [,] 1 ) { 𝑦 } | 
						
							| 46 |  | iunid | ⊢ ∪  𝑦  ∈  ( 0 [,] 1 ) { 𝑦 }  =  ( 0 [,] 1 ) | 
						
							| 47 | 40 45 46 | 3eqtrri | ⊢ ( 0 [,] 1 )  =  ∪  𝑋 | 
						
							| 48 | 47 | eqcomi | ⊢ ∪  𝑋  =  ( 0 [,] 1 ) | 
						
							| 49 | 1 2 48 | salexct2 | ⊢ ¬  ∪  𝑋  ∈  𝑆 | 
						
							| 50 | 8 39 49 | 3pm3.2i | ⊢ ( 𝑆  ∈  SAlg  ∧  𝑋  ⊆  𝑆  ∧  ¬  ∪  𝑋  ∈  𝑆 ) |