| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issalgend.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | issalgend.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | issalgend.u | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  𝑋 ) | 
						
							| 4 |  | issalgend.i | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 5 |  | issalgend.a | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  SAlg  ∧  ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) )  →  𝑆  ⊆  𝑦 ) | 
						
							| 6 |  | eqid | ⊢ ( SalGen ‘ 𝑋 )  =  ( SalGen ‘ 𝑋 ) | 
						
							| 7 | 1 6 2 4 3 | salgenss | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  ⊆  𝑆 ) | 
						
							| 8 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  𝜑 ) | 
						
							| 9 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  𝑦  ∈  SAlg ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  𝑦  ∈  SAlg ) | 
						
							| 11 |  | unieq | ⊢ ( 𝑠  =  𝑦  →  ∪  𝑠  =  ∪  𝑦 ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑠  =  𝑦  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝑦  =  ∪  𝑋 ) ) | 
						
							| 13 |  | sseq2 | ⊢ ( 𝑠  =  𝑦  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝑦 ) ) | 
						
							| 14 | 12 13 | anbi12d | ⊢ ( 𝑠  =  𝑦  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) ) ) | 
						
							| 15 | 14 | elrab | ⊢ ( 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝑦  ∈  SAlg  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) ) ) | 
						
							| 16 | 15 | biimpi | ⊢ ( 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ( 𝑦  ∈  SAlg  ∧  ( ∪  𝑦  =  ∪  𝑋  ∧  𝑋  ⊆  𝑦 ) ) ) | 
						
							| 17 | 16 | simprld | ⊢ ( 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ∪  𝑦  =  ∪  𝑋 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  ∪  𝑦  =  ∪  𝑋 ) | 
						
							| 19 | 16 | simprrd | ⊢ ( 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  𝑋  ⊆  𝑦 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  𝑋  ⊆  𝑦 ) | 
						
							| 21 | 8 10 18 20 5 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  𝑆  ⊆  𝑦 ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } 𝑆  ⊆  𝑦 ) | 
						
							| 23 |  | ssint | ⊢ ( 𝑆  ⊆  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ∀ 𝑦  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } 𝑆  ⊆  𝑦 ) | 
						
							| 24 | 22 23 | sylibr | ⊢ ( 𝜑  →  𝑆  ⊆  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 25 |  | salgenval | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 27 | 24 26 | sseqtrrd | ⊢ ( 𝜑  →  𝑆  ⊆  ( SalGen ‘ 𝑋 ) ) | 
						
							| 28 | 7 27 | eqssd | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  =  𝑆 ) |