Step |
Hyp |
Ref |
Expression |
1 |
|
issalgend.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
issalgend.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
issalgend.u |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝑋 ) |
4 |
|
issalgend.i |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
5 |
|
issalgend.a |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ SAlg ∧ ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) → 𝑆 ⊆ 𝑦 ) |
6 |
|
eqid |
⊢ ( SalGen ‘ 𝑋 ) = ( SalGen ‘ 𝑋 ) |
7 |
1 6 2 4 3
|
salgenss |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) ⊆ 𝑆 ) |
8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → 𝜑 ) |
9 |
|
elrabi |
⊢ ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → 𝑦 ∈ SAlg ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → 𝑦 ∈ SAlg ) |
11 |
|
unieq |
⊢ ( 𝑠 = 𝑦 → ∪ 𝑠 = ∪ 𝑦 ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑠 = 𝑦 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑦 = ∪ 𝑋 ) ) |
13 |
|
sseq2 |
⊢ ( 𝑠 = 𝑦 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑦 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑠 = 𝑦 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) ) |
15 |
14
|
elrab |
⊢ ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝑦 ∈ SAlg ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) ) |
16 |
15
|
biimpi |
⊢ ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ( 𝑦 ∈ SAlg ∧ ( ∪ 𝑦 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑦 ) ) ) |
17 |
16
|
simprld |
⊢ ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∪ 𝑦 = ∪ 𝑋 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → ∪ 𝑦 = ∪ 𝑋 ) |
19 |
16
|
simprrd |
⊢ ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → 𝑋 ⊆ 𝑦 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → 𝑋 ⊆ 𝑦 ) |
21 |
8 10 18 20 5
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → 𝑆 ⊆ 𝑦 ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } 𝑆 ⊆ 𝑦 ) |
23 |
|
ssint |
⊢ ( 𝑆 ⊆ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ∀ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } 𝑆 ⊆ 𝑦 ) |
24 |
22 23
|
sylibr |
⊢ ( 𝜑 → 𝑆 ⊆ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
25 |
|
salgenval |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
27 |
24 26
|
sseqtrrd |
⊢ ( 𝜑 → 𝑆 ⊆ ( SalGen ‘ 𝑋 ) ) |
28 |
7 27
|
eqssd |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) = 𝑆 ) |