Metamath Proof Explorer


Theorem issalgend

Description: One side of dfsalgen2 . If a sigma-algebra on U. X includes X and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by X . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses issalgend.x ( 𝜑𝑋𝑉 )
issalgend.s ( 𝜑𝑆 ∈ SAlg )
issalgend.u ( 𝜑 𝑆 = 𝑋 )
issalgend.i ( 𝜑𝑋𝑆 )
issalgend.a ( ( 𝜑 ∧ ( 𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑆𝑦 )
Assertion issalgend ( 𝜑 → ( SalGen ‘ 𝑋 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 issalgend.x ( 𝜑𝑋𝑉 )
2 issalgend.s ( 𝜑𝑆 ∈ SAlg )
3 issalgend.u ( 𝜑 𝑆 = 𝑋 )
4 issalgend.i ( 𝜑𝑋𝑆 )
5 issalgend.a ( ( 𝜑 ∧ ( 𝑦 ∈ SAlg ∧ 𝑦 = 𝑋𝑋𝑦 ) ) → 𝑆𝑦 )
6 eqid ( SalGen ‘ 𝑋 ) = ( SalGen ‘ 𝑋 )
7 1 6 2 4 3 salgenss ( 𝜑 → ( SalGen ‘ 𝑋 ) ⊆ 𝑆 )
8 simpl ( ( 𝜑𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝜑 )
9 elrabi ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑦 ∈ SAlg )
10 9 adantl ( ( 𝜑𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑦 ∈ SAlg )
11 unieq ( 𝑠 = 𝑦 𝑠 = 𝑦 )
12 11 eqeq1d ( 𝑠 = 𝑦 → ( 𝑠 = 𝑋 𝑦 = 𝑋 ) )
13 sseq2 ( 𝑠 = 𝑦 → ( 𝑋𝑠𝑋𝑦 ) )
14 12 13 anbi12d ( 𝑠 = 𝑦 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝑦 = 𝑋𝑋𝑦 ) ) )
15 14 elrab ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) )
16 15 biimpi ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → ( 𝑦 ∈ SAlg ∧ ( 𝑦 = 𝑋𝑋𝑦 ) ) )
17 16 simprld ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑦 = 𝑋 )
18 17 adantl ( ( 𝜑𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑦 = 𝑋 )
19 16 simprrd ( 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑋𝑦 )
20 19 adantl ( ( 𝜑𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑋𝑦 )
21 8 10 18 20 5 syl13anc ( ( 𝜑𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑆𝑦 )
22 21 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } 𝑆𝑦 )
23 ssint ( 𝑆 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ∀ 𝑦 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } 𝑆𝑦 )
24 22 23 sylibr ( 𝜑𝑆 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
25 salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
26 1 25 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
27 24 26 sseqtrrd ( 𝜑𝑆 ⊆ ( SalGen ‘ 𝑋 ) )
28 7 27 eqssd ( 𝜑 → ( SalGen ‘ 𝑋 ) = 𝑆 )