Metamath Proof Explorer


Theorem issalgend

Description: One side of dfsalgen2 . If a sigma-algebra on U. X includes X and it is included in all the sigma-algebras with such two properties, then it is the sigma-algebra generated by X . (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses issalgend.x φ X V
issalgend.s φ S SAlg
issalgend.u φ S = X
issalgend.i φ X S
issalgend.a φ y SAlg y = X X y S y
Assertion issalgend φ SalGen X = S

Proof

Step Hyp Ref Expression
1 issalgend.x φ X V
2 issalgend.s φ S SAlg
3 issalgend.u φ S = X
4 issalgend.i φ X S
5 issalgend.a φ y SAlg y = X X y S y
6 eqid SalGen X = SalGen X
7 1 6 2 4 3 salgenss φ SalGen X S
8 simpl φ y s SAlg | s = X X s φ
9 elrabi y s SAlg | s = X X s y SAlg
10 9 adantl φ y s SAlg | s = X X s y SAlg
11 unieq s = y s = y
12 11 eqeq1d s = y s = X y = X
13 sseq2 s = y X s X y
14 12 13 anbi12d s = y s = X X s y = X X y
15 14 elrab y s SAlg | s = X X s y SAlg y = X X y
16 15 biimpi y s SAlg | s = X X s y SAlg y = X X y
17 16 simprld y s SAlg | s = X X s y = X
18 17 adantl φ y s SAlg | s = X X s y = X
19 16 simprrd y s SAlg | s = X X s X y
20 19 adantl φ y s SAlg | s = X X s X y
21 8 10 18 20 5 syl13anc φ y s SAlg | s = X X s S y
22 21 ralrimiva φ y s SAlg | s = X X s S y
23 ssint S s SAlg | s = X X s y s SAlg | s = X X s S y
24 22 23 sylibr φ S s SAlg | s = X X s
25 salgenval X V SalGen X = s SAlg | s = X X s
26 1 25 syl φ SalGen X = s SAlg | s = X X s
27 24 26 sseqtrrd φ S SalGen X
28 7 27 eqssd φ SalGen X = S