| Step |
Hyp |
Ref |
Expression |
| 1 |
|
salgenuni.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
salgenuni.s |
⊢ 𝑆 = ( SalGen ‘ 𝑋 ) |
| 3 |
|
salgenuni.u |
⊢ 𝑈 = ∪ 𝑋 |
| 4 |
2
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( SalGen ‘ 𝑋 ) ) |
| 5 |
|
salgenval |
⊢ ( 𝑋 ∈ 𝑉 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → ( SalGen ‘ 𝑋 ) = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 7 |
4 6
|
eqtrd |
⊢ ( 𝜑 → 𝑆 = ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 8 |
7
|
unieqd |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 9 |
|
ssrab2 |
⊢ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ SAlg |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ⊆ SAlg ) |
| 11 |
|
salgenn0 |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ) |
| 13 |
|
unieq |
⊢ ( 𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡 ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑠 = 𝑡 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋 ) ) |
| 15 |
|
sseq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡 ) ) |
| 16 |
14 15
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
| 17 |
16
|
elrab |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
| 18 |
17
|
biimpi |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( ∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡 ) ) ) |
| 19 |
18
|
simprld |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∪ 𝑡 = ∪ 𝑋 ) |
| 20 |
3
|
eqcomi |
⊢ ∪ 𝑋 = 𝑈 |
| 21 |
20
|
a1i |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∪ 𝑋 = 𝑈 ) |
| 22 |
19 21
|
eqtrd |
⊢ ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } → ∪ 𝑡 = 𝑈 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) → ∪ 𝑡 = 𝑈 ) |
| 24 |
10 12 23
|
intsaluni |
⊢ ( 𝜑 → ∪ ∩ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } = 𝑈 ) |
| 25 |
8 24
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑆 = 𝑈 ) |