| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salgenuni.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 2 |  | salgenuni.s | ⊢ 𝑆  =  ( SalGen ‘ 𝑋 ) | 
						
							| 3 |  | salgenuni.u | ⊢ 𝑈  =  ∪  𝑋 | 
						
							| 4 | 2 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( SalGen ‘ 𝑋 ) ) | 
						
							| 5 |  | salgenval | ⊢ ( 𝑋  ∈  𝑉  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  ( SalGen ‘ 𝑋 )  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 7 | 4 6 | eqtrd | ⊢ ( 𝜑  →  𝑆  =  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 8 | 7 | unieqd | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ⊆  SAlg | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ⊆  SAlg ) | 
						
							| 11 |  | salgenn0 | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ≠  ∅ ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ≠  ∅ ) | 
						
							| 13 |  | unieq | ⊢ ( 𝑠  =  𝑡  →  ∪  𝑠  =  ∪  𝑡 ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝑡  =  ∪  𝑋 ) ) | 
						
							| 15 |  | sseq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝑡 ) ) | 
						
							| 16 | 14 15 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝑡  ∈  SAlg  ∧  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 18 | 17 | biimpi | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ( 𝑡  ∈  SAlg  ∧  ( ∪  𝑡  =  ∪  𝑋  ∧  𝑋  ⊆  𝑡 ) ) ) | 
						
							| 19 | 18 | simprld | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ∪  𝑡  =  ∪  𝑋 ) | 
						
							| 20 | 3 | eqcomi | ⊢ ∪  𝑋  =  𝑈 | 
						
							| 21 | 20 | a1i | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ∪  𝑋  =  𝑈 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( 𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  →  ∪  𝑡  =  𝑈 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } )  →  ∪  𝑡  =  𝑈 ) | 
						
							| 24 | 10 12 23 | intsaluni | ⊢ ( 𝜑  →  ∪  ∩  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  =  𝑈 ) | 
						
							| 25 | 8 24 | eqtrd | ⊢ ( 𝜑  →  ∪  𝑆  =  𝑈 ) |