Metamath Proof Explorer


Theorem salgenuni

Description: The base set of the sigma-algebra generated by a set is the union of the set itself. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses salgenuni.x ( 𝜑𝑋𝑉 )
salgenuni.s 𝑆 = ( SalGen ‘ 𝑋 )
salgenuni.u 𝑈 = 𝑋
Assertion salgenuni ( 𝜑 𝑆 = 𝑈 )

Proof

Step Hyp Ref Expression
1 salgenuni.x ( 𝜑𝑋𝑉 )
2 salgenuni.s 𝑆 = ( SalGen ‘ 𝑋 )
3 salgenuni.u 𝑈 = 𝑋
4 2 a1i ( 𝜑𝑆 = ( SalGen ‘ 𝑋 ) )
5 salgenval ( 𝑋𝑉 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
6 1 5 syl ( 𝜑 → ( SalGen ‘ 𝑋 ) = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
7 4 6 eqtrd ( 𝜑𝑆 = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
8 7 unieqd ( 𝜑 𝑆 = { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
9 ssrab2 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ SAlg
10 9 a1i ( 𝜑 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ⊆ SAlg )
11 salgenn0 ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )
12 1 11 syl ( 𝜑 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )
13 unieq ( 𝑠 = 𝑡 𝑠 = 𝑡 )
14 13 eqeq1d ( 𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋 ) )
15 sseq2 ( 𝑠 = 𝑡 → ( 𝑋𝑠𝑋𝑡 ) )
16 14 15 anbi12d ( 𝑠 = 𝑡 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
17 16 elrab ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
18 17 biimpi ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → ( 𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡 ) ) )
19 18 simprld ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑡 = 𝑋 )
20 3 eqcomi 𝑋 = 𝑈
21 20 a1i ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑋 = 𝑈 )
22 19 21 eqtrd ( 𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } → 𝑡 = 𝑈 )
23 22 adantl ( ( 𝜑𝑡 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ) → 𝑡 = 𝑈 )
24 10 12 23 intsaluni ( 𝜑 { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } = 𝑈 )
25 8 24 eqtrd ( 𝜑 𝑆 = 𝑈 )