Metamath Proof Explorer


Theorem salgenn0

Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenn0 ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 uniexg ( 𝑋𝑉 𝑋 ∈ V )
2 pwsal ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg )
3 1 2 syl ( 𝑋𝑉 → 𝒫 𝑋 ∈ SAlg )
4 unipw 𝒫 𝑋 = 𝑋
5 4 a1i ( 𝑋𝑉 𝒫 𝑋 = 𝑋 )
6 pwuni 𝑋 ⊆ 𝒫 𝑋
7 6 a1i ( 𝑋𝑉𝑋 ⊆ 𝒫 𝑋 )
8 5 7 jca ( 𝑋𝑉 → ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) )
9 3 8 jca ( 𝑋𝑉 → ( 𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
10 unieq ( 𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋 )
11 10 eqeq1d ( 𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋 ) )
12 sseq2 ( 𝑠 = 𝒫 𝑋 → ( 𝑋𝑠𝑋 ⊆ 𝒫 𝑋 ) )
13 11 12 anbi12d ( 𝑠 = 𝒫 𝑋 → ( ( 𝑠 = 𝑋𝑋𝑠 ) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
14 13 elrab ( 𝒫 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ↔ ( 𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋 ) ) )
15 9 14 sylibr ( 𝑋𝑉 → 𝒫 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } )
16 15 ne0d ( 𝑋𝑉 → { 𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠 ) } ≠ ∅ )