| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniexg | ⊢ ( 𝑋  ∈  𝑉  →  ∪  𝑋  ∈  V ) | 
						
							| 2 |  | pwsal | ⊢ ( ∪  𝑋  ∈  V  →  𝒫  ∪  𝑋  ∈  SAlg ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  ∪  𝑋  ∈  SAlg ) | 
						
							| 4 |  | unipw | ⊢ ∪  𝒫  ∪  𝑋  =  ∪  𝑋 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ∪  𝒫  ∪  𝑋  =  ∪  𝑋 ) | 
						
							| 6 |  | pwuni | ⊢ 𝑋  ⊆  𝒫  ∪  𝑋 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ⊆  𝒫  ∪  𝑋 ) | 
						
							| 8 | 5 7 | jca | ⊢ ( 𝑋  ∈  𝑉  →  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) | 
						
							| 9 | 3 8 | jca | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝒫  ∪  𝑋  ∈  SAlg  ∧  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 10 |  | unieq | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ∪  𝑠  =  ∪  𝒫  ∪  𝑋 ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( ∪  𝑠  =  ∪  𝑋  ↔  ∪  𝒫  ∪  𝑋  =  ∪  𝑋 ) ) | 
						
							| 12 |  | sseq2 | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( 𝑋  ⊆  𝑠  ↔  𝑋  ⊆  𝒫  ∪  𝑋 ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑠  =  𝒫  ∪  𝑋  →  ( ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 )  ↔  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 14 | 13 | elrab | ⊢ ( 𝒫  ∪  𝑋  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ↔  ( 𝒫  ∪  𝑋  ∈  SAlg  ∧  ( ∪  𝒫  ∪  𝑋  =  ∪  𝑋  ∧  𝑋  ⊆  𝒫  ∪  𝑋 ) ) ) | 
						
							| 15 | 9 14 | sylibr | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  ∪  𝑋  ∈  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) } ) | 
						
							| 16 | 15 | ne0d | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑠  ∈  SAlg  ∣  ( ∪  𝑠  =  ∪  𝑋  ∧  𝑋  ⊆  𝑠 ) }  ≠  ∅ ) |