| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniexg |
⊢ ( 𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V ) |
| 2 |
|
pwsal |
⊢ ( ∪ 𝑋 ∈ V → 𝒫 ∪ 𝑋 ∈ SAlg ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ SAlg ) |
| 4 |
|
unipw |
⊢ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 |
| 5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ) |
| 6 |
|
pwuni |
⊢ 𝑋 ⊆ 𝒫 ∪ 𝑋 |
| 7 |
6
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝒫 ∪ 𝑋 ) |
| 8 |
5 7
|
jca |
⊢ ( 𝑋 ∈ 𝑉 → ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) |
| 9 |
3 8
|
jca |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝒫 ∪ 𝑋 ∈ SAlg ∧ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 10 |
|
unieq |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ∪ 𝑠 = ∪ 𝒫 ∪ 𝑋 ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( ∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ) ) |
| 12 |
|
sseq2 |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( 𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( 𝑠 = 𝒫 ∪ 𝑋 → ( ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) ↔ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 14 |
13
|
elrab |
⊢ ( 𝒫 ∪ 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ↔ ( 𝒫 ∪ 𝑋 ∈ SAlg ∧ ( ∪ 𝒫 ∪ 𝑋 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝒫 ∪ 𝑋 ) ) ) |
| 15 |
9 14
|
sylibr |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ∪ 𝑋 ∈ { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ) |
| 16 |
15
|
ne0d |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑠 ∈ SAlg ∣ ( ∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠 ) } ≠ ∅ ) |