Metamath Proof Explorer


Theorem salgenn0

Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenn0 X V s SAlg | s = X X s

Proof

Step Hyp Ref Expression
1 uniexg X V X V
2 pwsal X V 𝒫 X SAlg
3 1 2 syl X V 𝒫 X SAlg
4 unipw 𝒫 X = X
5 4 a1i X V 𝒫 X = X
6 pwuni X 𝒫 X
7 6 a1i X V X 𝒫 X
8 5 7 jca X V 𝒫 X = X X 𝒫 X
9 3 8 jca X V 𝒫 X SAlg 𝒫 X = X X 𝒫 X
10 unieq s = 𝒫 X s = 𝒫 X
11 10 eqeq1d s = 𝒫 X s = X 𝒫 X = X
12 sseq2 s = 𝒫 X X s X 𝒫 X
13 11 12 anbi12d s = 𝒫 X s = X X s 𝒫 X = X X 𝒫 X
14 13 elrab 𝒫 X s SAlg | s = X X s 𝒫 X SAlg 𝒫 X = X X 𝒫 X
15 9 14 sylibr X V 𝒫 X s SAlg | s = X X s
16 15 ne0d X V s SAlg | s = X X s