Metamath Proof Explorer


Theorem salgencl

Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgencl X V SalGen X SAlg

Proof

Step Hyp Ref Expression
1 salgenval X V SalGen X = s SAlg | s = X X s
2 ssrab2 s SAlg | s = X X s SAlg
3 2 a1i X V s SAlg | s = X X s SAlg
4 salgenn0 X V s SAlg | s = X X s
5 unieq s = t s = t
6 5 eqeq1d s = t s = X t = X
7 sseq2 s = t X s X t
8 6 7 anbi12d s = t s = X X s t = X X t
9 8 elrab t s SAlg | s = X X s t SAlg t = X X t
10 9 biimpi t s SAlg | s = X X s t SAlg t = X X t
11 10 simprld t s SAlg | s = X X s t = X
12 11 adantl X V t s SAlg | s = X X s t = X
13 3 4 12 intsal X V s SAlg | s = X X s SAlg
14 1 13 eqeltrd X V SalGen X SAlg