Step |
Hyp |
Ref |
Expression |
1 |
|
intsal.ga |
|
2 |
|
intsal.gn0 |
|
3 |
|
intsal.x |
|
4 |
|
simpl |
|
5 |
1
|
sselda |
|
6 |
|
simpr |
|
7 |
|
0sal |
|
8 |
6 7
|
syl |
|
9 |
4 5 8
|
syl2anc |
|
10 |
9
|
ralrimiva |
|
11 |
|
0ex |
|
12 |
11
|
elint2 |
|
13 |
10 12
|
sylibr |
|
14 |
1 2 3
|
intsaluni |
|
15 |
14
|
eqcomd |
|
16 |
15
|
adantr |
|
17 |
3 16
|
eqtr2d |
|
18 |
17
|
difeq1d |
|
19 |
18
|
adantlr |
|
20 |
5
|
adantlr |
|
21 |
|
elinti |
|
22 |
21
|
imp |
|
23 |
22
|
adantll |
|
24 |
|
saldifcl |
|
25 |
20 23 24
|
syl2anc |
|
26 |
19 25
|
eqeltrd |
|
27 |
26
|
ralrimiva |
|
28 |
|
intex |
|
29 |
28
|
biimpi |
|
30 |
2 29
|
syl |
|
31 |
30
|
uniexd |
|
32 |
31
|
difexd |
|
33 |
32
|
adantr |
|
34 |
|
elintg |
|
35 |
33 34
|
syl |
|
36 |
27 35
|
mpbird |
|
37 |
36
|
ralrimiva |
|
38 |
5
|
ad4ant14 |
|
39 |
|
elpwi |
|
40 |
39
|
adantr |
|
41 |
|
intss1 |
|
42 |
41
|
adantl |
|
43 |
40 42
|
sstrd |
|
44 |
|
vex |
|
45 |
44
|
elpw |
|
46 |
43 45
|
sylibr |
|
47 |
46
|
adantll |
|
48 |
47
|
adantlr |
|
49 |
|
simplr |
|
50 |
38 48 49
|
salunicl |
|
51 |
50
|
ralrimiva |
|
52 |
|
vuniex |
|
53 |
52
|
a1i |
|
54 |
|
elintg |
|
55 |
53 54
|
syl |
|
56 |
51 55
|
mpbird |
|
57 |
56
|
ex |
|
58 |
57
|
ralrimiva |
|
59 |
13 37 58
|
3jca |
|
60 |
|
issal |
|
61 |
30 60
|
syl |
|
62 |
59 61
|
mpbird |
|