Metamath Proof Explorer


Theorem saldifcl

Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saldifcl SSAlgESSES

Proof

Step Hyp Ref Expression
1 difeq2 y=ESy=SE
2 1 eleq1d y=ESySSES
3 issal SSAlgSSAlgSySSySy𝒫SyωyS
4 3 ibi SSAlgSySSySy𝒫SyωyS
5 4 simp2d SSAlgySSyS
6 5 adantr SSAlgESySSyS
7 simpr SSAlgESES
8 2 6 7 rspcdva SSAlgESSES