Metamath Proof Explorer


Theorem saldifcl

Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion saldifcl S SAlg E S S E S

Proof

Step Hyp Ref Expression
1 difeq2 y = E S y = S E
2 1 eleq1d y = E S y S S E S
3 issal S SAlg S SAlg S y S S y S y 𝒫 S y ω y S
4 3 ibi S SAlg S y S S y S y 𝒫 S y ω y S
5 4 simp2d S SAlg y S S y S
6 5 adantr S SAlg E S y S S y S
7 simpr S SAlg E S E S
8 2 6 7 rspcdva S SAlg E S S E S