| Step | Hyp | Ref | Expression | 
						
							| 1 |  | intsal.ga | ⊢ ( 𝜑  →  𝐺  ⊆  SAlg ) | 
						
							| 2 |  | intsal.gn0 | ⊢ ( 𝜑  →  𝐺  ≠  ∅ ) | 
						
							| 3 |  | intsal.x | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  ∪  𝑠  =  𝑋 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  𝜑 ) | 
						
							| 5 | 1 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  𝑠  ∈  SAlg ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  SAlg )  →  𝑠  ∈  SAlg ) | 
						
							| 7 |  | 0sal | ⊢ ( 𝑠  ∈  SAlg  →  ∅  ∈  𝑠 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  SAlg )  →  ∅  ∈  𝑠 ) | 
						
							| 9 | 4 5 8 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  ∅  ∈  𝑠 ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  𝐺 ∅  ∈  𝑠 ) | 
						
							| 11 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 12 | 11 | elint2 | ⊢ ( ∅  ∈  ∩  𝐺  ↔  ∀ 𝑠  ∈  𝐺 ∅  ∈  𝑠 ) | 
						
							| 13 | 10 12 | sylibr | ⊢ ( 𝜑  →  ∅  ∈  ∩  𝐺 ) | 
						
							| 14 | 1 2 3 | intsaluni | ⊢ ( 𝜑  →  ∪  ∩  𝐺  =  𝑋 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  𝑋  =  ∪  ∩  𝐺 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  𝑋  =  ∪  ∩  𝐺 ) | 
						
							| 17 | 3 16 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  ∪  ∩  𝐺  =  ∪  𝑠 ) | 
						
							| 18 | 17 | difeq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝐺 )  →  ( ∪  ∩  𝐺  ∖  𝑦 )  =  ( ∪  𝑠  ∖  𝑦 ) ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  ( ∪  ∩  𝐺  ∖  𝑦 )  =  ( ∪  𝑠  ∖  𝑦 ) ) | 
						
							| 20 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  𝑠  ∈  SAlg ) | 
						
							| 21 |  | elinti | ⊢ ( 𝑦  ∈  ∩  𝐺  →  ( 𝑠  ∈  𝐺  →  𝑦  ∈  𝑠 ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( 𝑦  ∈  ∩  𝐺  ∧  𝑠  ∈  𝐺 )  →  𝑦  ∈  𝑠 ) | 
						
							| 23 | 22 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  𝑦  ∈  𝑠 ) | 
						
							| 24 |  | saldifcl | ⊢ ( ( 𝑠  ∈  SAlg  ∧  𝑦  ∈  𝑠 )  →  ( ∪  𝑠  ∖  𝑦 )  ∈  𝑠 ) | 
						
							| 25 | 20 23 24 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  ( ∪  𝑠  ∖  𝑦 )  ∈  𝑠 ) | 
						
							| 26 | 19 25 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  𝑠 ) | 
						
							| 27 | 26 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  →  ∀ 𝑠  ∈  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  𝑠 ) | 
						
							| 28 |  | intex | ⊢ ( 𝐺  ≠  ∅  ↔  ∩  𝐺  ∈  V ) | 
						
							| 29 | 28 | biimpi | ⊢ ( 𝐺  ≠  ∅  →  ∩  𝐺  ∈  V ) | 
						
							| 30 | 2 29 | syl | ⊢ ( 𝜑  →  ∩  𝐺  ∈  V ) | 
						
							| 31 | 30 | uniexd | ⊢ ( 𝜑  →  ∪  ∩  𝐺  ∈  V ) | 
						
							| 32 | 31 | difexd | ⊢ ( 𝜑  →  ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  V ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  →  ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  V ) | 
						
							| 34 |  | elintg | ⊢ ( ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  V  →  ( ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺  ↔  ∀ 𝑠  ∈  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  𝑠 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  →  ( ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺  ↔  ∀ 𝑠  ∈  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  𝑠 ) ) | 
						
							| 36 | 27 35 | mpbird | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∩  𝐺 )  →  ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺 ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ∩  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺 ) | 
						
							| 38 | 5 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  ∧  𝑠  ∈  𝐺 )  →  𝑠  ∈  SAlg ) | 
						
							| 39 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  ∩  𝐺  →  𝑦  ⊆  ∩  𝐺 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝑦  ∈  𝒫  ∩  𝐺  ∧  𝑠  ∈  𝐺 )  →  𝑦  ⊆  ∩  𝐺 ) | 
						
							| 41 |  | intss1 | ⊢ ( 𝑠  ∈  𝐺  →  ∩  𝐺  ⊆  𝑠 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑦  ∈  𝒫  ∩  𝐺  ∧  𝑠  ∈  𝐺 )  →  ∩  𝐺  ⊆  𝑠 ) | 
						
							| 43 | 40 42 | sstrd | ⊢ ( ( 𝑦  ∈  𝒫  ∩  𝐺  ∧  𝑠  ∈  𝐺 )  →  𝑦  ⊆  𝑠 ) | 
						
							| 44 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 45 | 44 | elpw | ⊢ ( 𝑦  ∈  𝒫  𝑠  ↔  𝑦  ⊆  𝑠 ) | 
						
							| 46 | 43 45 | sylibr | ⊢ ( ( 𝑦  ∈  𝒫  ∩  𝐺  ∧  𝑠  ∈  𝐺 )  →  𝑦  ∈  𝒫  𝑠 ) | 
						
							| 47 | 46 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑠  ∈  𝐺 )  →  𝑦  ∈  𝒫  𝑠 ) | 
						
							| 48 | 47 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  ∧  𝑠  ∈  𝐺 )  →  𝑦  ∈  𝒫  𝑠 ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  ∧  𝑠  ∈  𝐺 )  →  𝑦  ≼  ω ) | 
						
							| 50 | 38 48 49 | salunicl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  ∧  𝑠  ∈  𝐺 )  →  ∪  𝑦  ∈  𝑠 ) | 
						
							| 51 | 50 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  →  ∀ 𝑠  ∈  𝐺 ∪  𝑦  ∈  𝑠 ) | 
						
							| 52 |  | vuniex | ⊢ ∪  𝑦  ∈  V | 
						
							| 53 | 52 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  →  ∪  𝑦  ∈  V ) | 
						
							| 54 |  | elintg | ⊢ ( ∪  𝑦  ∈  V  →  ( ∪  𝑦  ∈  ∩  𝐺  ↔  ∀ 𝑠  ∈  𝐺 ∪  𝑦  ∈  𝑠 ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  →  ( ∪  𝑦  ∈  ∩  𝐺  ↔  ∀ 𝑠  ∈  𝐺 ∪  𝑦  ∈  𝑠 ) ) | 
						
							| 56 | 51 55 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  ∧  𝑦  ≼  ω )  →  ∪  𝑦  ∈  ∩  𝐺 ) | 
						
							| 57 | 56 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  ∩  𝐺 )  →  ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  ∩  𝐺 ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝒫  ∩  𝐺 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  ∩  𝐺 ) ) | 
						
							| 59 | 13 37 58 | 3jca | ⊢ ( 𝜑  →  ( ∅  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  ∩  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  𝒫  ∩  𝐺 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  ∩  𝐺 ) ) ) | 
						
							| 60 |  | issal | ⊢ ( ∩  𝐺  ∈  V  →  ( ∩  𝐺  ∈  SAlg  ↔  ( ∅  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  ∩  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  𝒫  ∩  𝐺 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  ∩  𝐺 ) ) ) ) | 
						
							| 61 | 30 60 | syl | ⊢ ( 𝜑  →  ( ∩  𝐺  ∈  SAlg  ↔  ( ∅  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  ∩  𝐺 ( ∪  ∩  𝐺  ∖  𝑦 )  ∈  ∩  𝐺  ∧  ∀ 𝑦  ∈  𝒫  ∩  𝐺 ( 𝑦  ≼  ω  →  ∪  𝑦  ∈  ∩  𝐺 ) ) ) ) | 
						
							| 62 | 59 61 | mpbird | ⊢ ( 𝜑  →  ∩  𝐺  ∈  SAlg ) |