Step |
Hyp |
Ref |
Expression |
1 |
|
intsal.ga |
⊢ ( 𝜑 → 𝐺 ⊆ SAlg ) |
2 |
|
intsal.gn0 |
⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
3 |
|
intsal.x |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 = 𝑋 ) |
4 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝜑 ) |
5 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ SAlg ) → 𝑠 ∈ SAlg ) |
7 |
|
0sal |
⊢ ( 𝑠 ∈ SAlg → ∅ ∈ 𝑠 ) |
8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ SAlg ) → ∅ ∈ 𝑠 ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∅ ∈ 𝑠 ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐺 ∅ ∈ 𝑠 ) |
11 |
|
0ex |
⊢ ∅ ∈ V |
12 |
11
|
elint2 |
⊢ ( ∅ ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∅ ∈ 𝑠 ) |
13 |
10 12
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ∩ 𝐺 ) |
14 |
1 2 3
|
intsaluni |
⊢ ( 𝜑 → ∪ ∩ 𝐺 = 𝑋 ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ∪ ∩ 𝐺 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝑋 = ∪ ∩ 𝐺 ) |
17 |
3 16
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ ∩ 𝐺 = ∪ 𝑠 ) |
18 |
17
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) = ( ∪ 𝑠 ∖ 𝑦 ) ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) = ( ∪ 𝑠 ∖ 𝑦 ) ) |
20 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
21 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝐺 → ( 𝑠 ∈ 𝐺 → 𝑦 ∈ 𝑠 ) ) |
22 |
21
|
imp |
⊢ ( ( 𝑦 ∈ ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝑠 ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝑠 ) |
24 |
|
saldifcl |
⊢ ( ( 𝑠 ∈ SAlg ∧ 𝑦 ∈ 𝑠 ) → ( ∪ 𝑠 ∖ 𝑦 ) ∈ 𝑠 ) |
25 |
20 23 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ 𝑠 ∖ 𝑦 ) ∈ 𝑠 ) |
26 |
19 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) |
27 |
26
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) |
28 |
|
intex |
⊢ ( 𝐺 ≠ ∅ ↔ ∩ 𝐺 ∈ V ) |
29 |
28
|
biimpi |
⊢ ( 𝐺 ≠ ∅ → ∩ 𝐺 ∈ V ) |
30 |
2 29
|
syl |
⊢ ( 𝜑 → ∩ 𝐺 ∈ V ) |
31 |
30
|
uniexd |
⊢ ( 𝜑 → ∪ ∩ 𝐺 ∈ V ) |
32 |
31
|
difexd |
⊢ ( 𝜑 → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V ) |
34 |
|
elintg |
⊢ ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V → ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) ) |
36 |
27 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ) |
37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ) |
38 |
5
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
39 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ∩ 𝐺 → 𝑦 ⊆ ∩ 𝐺 ) |
40 |
39
|
adantr |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ⊆ ∩ 𝐺 ) |
41 |
|
intss1 |
⊢ ( 𝑠 ∈ 𝐺 → ∩ 𝐺 ⊆ 𝑠 ) |
42 |
41
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → ∩ 𝐺 ⊆ 𝑠 ) |
43 |
40 42
|
sstrd |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ⊆ 𝑠 ) |
44 |
|
vex |
⊢ 𝑦 ∈ V |
45 |
44
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝑠 ↔ 𝑦 ⊆ 𝑠 ) |
46 |
43 45
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
48 |
47
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
49 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ≼ ω ) |
50 |
38 48 49
|
salunicl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑦 ∈ 𝑠 ) |
51 |
50
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) |
52 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
53 |
52
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∪ 𝑦 ∈ V ) |
54 |
|
elintg |
⊢ ( ∪ 𝑦 ∈ V → ( ∪ 𝑦 ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) ) |
55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ( ∪ 𝑦 ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) ) |
56 |
51 55
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∪ 𝑦 ∈ ∩ 𝐺 ) |
57 |
56
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) → ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) |
58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) |
59 |
13 37 58
|
3jca |
⊢ ( 𝜑 → ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) |
60 |
|
issal |
⊢ ( ∩ 𝐺 ∈ V → ( ∩ 𝐺 ∈ SAlg ↔ ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) ) |
61 |
30 60
|
syl |
⊢ ( 𝜑 → ( ∩ 𝐺 ∈ SAlg ↔ ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) ) |
62 |
59 61
|
mpbird |
⊢ ( 𝜑 → ∩ 𝐺 ∈ SAlg ) |