| Step |
Hyp |
Ref |
Expression |
| 1 |
|
intsal.ga |
⊢ ( 𝜑 → 𝐺 ⊆ SAlg ) |
| 2 |
|
intsal.gn0 |
⊢ ( 𝜑 → 𝐺 ≠ ∅ ) |
| 3 |
|
intsal.x |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑠 = 𝑋 ) |
| 4 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝜑 ) |
| 5 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ SAlg ) → 𝑠 ∈ SAlg ) |
| 7 |
|
0sal |
⊢ ( 𝑠 ∈ SAlg → ∅ ∈ 𝑠 ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ SAlg ) → ∅ ∈ 𝑠 ) |
| 9 |
4 5 8
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∅ ∈ 𝑠 ) |
| 10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝐺 ∅ ∈ 𝑠 ) |
| 11 |
|
0ex |
⊢ ∅ ∈ V |
| 12 |
11
|
elint2 |
⊢ ( ∅ ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∅ ∈ 𝑠 ) |
| 13 |
10 12
|
sylibr |
⊢ ( 𝜑 → ∅ ∈ ∩ 𝐺 ) |
| 14 |
1 2 3
|
intsaluni |
⊢ ( 𝜑 → ∪ ∩ 𝐺 = 𝑋 ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝜑 → 𝑋 = ∪ ∩ 𝐺 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → 𝑋 = ∪ ∩ 𝐺 ) |
| 17 |
3 16
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ∪ ∩ 𝐺 = ∪ 𝑠 ) |
| 18 |
17
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) = ( ∪ 𝑠 ∖ 𝑦 ) ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) = ( ∪ 𝑠 ∖ 𝑦 ) ) |
| 20 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
| 21 |
|
elinti |
⊢ ( 𝑦 ∈ ∩ 𝐺 → ( 𝑠 ∈ 𝐺 → 𝑦 ∈ 𝑠 ) ) |
| 22 |
21
|
imp |
⊢ ( ( 𝑦 ∈ ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝑠 ) |
| 23 |
22
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝑠 ) |
| 24 |
|
saldifcl |
⊢ ( ( 𝑠 ∈ SAlg ∧ 𝑦 ∈ 𝑠 ) → ( ∪ 𝑠 ∖ 𝑦 ) ∈ 𝑠 ) |
| 25 |
20 23 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ 𝑠 ∖ 𝑦 ) ∈ 𝑠 ) |
| 26 |
19 25
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) |
| 27 |
26
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) |
| 28 |
|
intex |
⊢ ( 𝐺 ≠ ∅ ↔ ∩ 𝐺 ∈ V ) |
| 29 |
28
|
biimpi |
⊢ ( 𝐺 ≠ ∅ → ∩ 𝐺 ∈ V ) |
| 30 |
2 29
|
syl |
⊢ ( 𝜑 → ∩ 𝐺 ∈ V ) |
| 31 |
30
|
uniexd |
⊢ ( 𝜑 → ∪ ∩ 𝐺 ∈ V ) |
| 32 |
31
|
difexd |
⊢ ( 𝜑 → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V ) |
| 34 |
|
elintg |
⊢ ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ V → ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ 𝑠 ) ) |
| 36 |
27 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ 𝐺 ) → ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ) |
| 37 |
36
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ) |
| 38 |
5
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑠 ∈ SAlg ) |
| 39 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 ∩ 𝐺 → 𝑦 ⊆ ∩ 𝐺 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ⊆ ∩ 𝐺 ) |
| 41 |
|
intss1 |
⊢ ( 𝑠 ∈ 𝐺 → ∩ 𝐺 ⊆ 𝑠 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → ∩ 𝐺 ⊆ 𝑠 ) |
| 43 |
40 42
|
sstrd |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ⊆ 𝑠 ) |
| 44 |
|
vex |
⊢ 𝑦 ∈ V |
| 45 |
44
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝑠 ↔ 𝑦 ⊆ 𝑠 ) |
| 46 |
43 45
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝒫 ∩ 𝐺 ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
| 47 |
46
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
| 48 |
47
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ∈ 𝒫 𝑠 ) |
| 49 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → 𝑦 ≼ ω ) |
| 50 |
38 48 49
|
salunicl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) ∧ 𝑠 ∈ 𝐺 ) → ∪ 𝑦 ∈ 𝑠 ) |
| 51 |
50
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) |
| 52 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
| 53 |
52
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∪ 𝑦 ∈ V ) |
| 54 |
|
elintg |
⊢ ( ∪ 𝑦 ∈ V → ( ∪ 𝑦 ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ( ∪ 𝑦 ∈ ∩ 𝐺 ↔ ∀ 𝑠 ∈ 𝐺 ∪ 𝑦 ∈ 𝑠 ) ) |
| 56 |
51 55
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) ∧ 𝑦 ≼ ω ) → ∪ 𝑦 ∈ ∩ 𝐺 ) |
| 57 |
56
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 ∩ 𝐺 ) → ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) |
| 59 |
13 37 58
|
3jca |
⊢ ( 𝜑 → ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) |
| 60 |
|
issal |
⊢ ( ∩ 𝐺 ∈ V → ( ∩ 𝐺 ∈ SAlg ↔ ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) ) |
| 61 |
30 60
|
syl |
⊢ ( 𝜑 → ( ∩ 𝐺 ∈ SAlg ↔ ( ∅ ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ ∩ 𝐺 ( ∪ ∩ 𝐺 ∖ 𝑦 ) ∈ ∩ 𝐺 ∧ ∀ 𝑦 ∈ 𝒫 ∩ 𝐺 ( 𝑦 ≼ ω → ∪ 𝑦 ∈ ∩ 𝐺 ) ) ) ) |
| 62 |
59 61
|
mpbird |
⊢ ( 𝜑 → ∩ 𝐺 ∈ SAlg ) |