Metamath Proof Explorer


Theorem unisalgen

Description: The union of a set belongs to the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses unisalgen.x φ X V
unisalgen.s S = SalGen X
unisalgen.u U = X
Assertion unisalgen φ U S

Proof

Step Hyp Ref Expression
1 unisalgen.x φ X V
2 unisalgen.s S = SalGen X
3 unisalgen.u U = X
4 1 2 3 salgenuni φ S = U
5 4 eqcomd φ U = S
6 2 a1i φ S = SalGen X
7 salgencl X V SalGen X SAlg
8 1 7 syl φ SalGen X SAlg
9 6 8 eqeltrd φ S SAlg
10 saluni S SAlg S S
11 9 10 syl φ S S
12 5 11 eqeltrd φ U S