Description: A set is an element of any sigma-algebra on it . (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | saluni | |- ( S e. SAlg -> U. S e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 | |- ( U. S \ (/) ) = U. S |
|
2 | 0sal | |- ( S e. SAlg -> (/) e. S ) |
|
3 | saldifcl | |- ( ( S e. SAlg /\ (/) e. S ) -> ( U. S \ (/) ) e. S ) |
|
4 | 2 3 | mpdan | |- ( S e. SAlg -> ( U. S \ (/) ) e. S ) |
5 | 1 4 | eqeltrrid | |- ( S e. SAlg -> U. S e. S ) |