Description: A set is an element of any sigma-algebra on it. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | saluni | |- ( S e. SAlg -> U. S e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dif0 | |- ( U. S \ (/) ) = U. S |
|
| 2 | 0sal | |- ( S e. SAlg -> (/) e. S ) |
|
| 3 | saldifcl | |- ( ( S e. SAlg /\ (/) e. S ) -> ( U. S \ (/) ) e. S ) |
|
| 4 | 2 3 | mpdan | |- ( S e. SAlg -> ( U. S \ (/) ) e. S ) |
| 5 | 1 4 | eqeltrrid | |- ( S e. SAlg -> U. S e. S ) |