| Step | Hyp | Ref | Expression | 
						
							| 1 |  | salgensscntex.a |  |-  A = ( 0 [,] 2 ) | 
						
							| 2 |  | salgensscntex.s |  |-  S = { x e. ~P A | ( x ~<_ _om \/ ( A \ x ) ~<_ _om ) } | 
						
							| 3 |  | salgensscntex.x |  |-  X = ran ( y e. ( 0 [,] 1 ) |-> { y } ) | 
						
							| 4 |  | salgensscntex.g |  |-  G = ( SalGen ` X ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 |  | 2re |  |-  2 e. RR | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( 0 e. RR /\ 2 e. RR ) | 
						
							| 8 | 5 | leidi |  |-  0 <_ 0 | 
						
							| 9 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 10 | 8 9 | pm3.2i |  |-  ( 0 <_ 0 /\ 1 <_ 2 ) | 
						
							| 11 |  | iccss |  |-  ( ( ( 0 e. RR /\ 2 e. RR ) /\ ( 0 <_ 0 /\ 1 <_ 2 ) ) -> ( 0 [,] 1 ) C_ ( 0 [,] 2 ) ) | 
						
							| 12 | 7 10 11 | mp2an |  |-  ( 0 [,] 1 ) C_ ( 0 [,] 2 ) | 
						
							| 13 |  | id |  |-  ( y e. ( 0 [,] 1 ) -> y e. ( 0 [,] 1 ) ) | 
						
							| 14 | 12 13 | sselid |  |-  ( y e. ( 0 [,] 1 ) -> y e. ( 0 [,] 2 ) ) | 
						
							| 15 | 14 1 | eleqtrrdi |  |-  ( y e. ( 0 [,] 1 ) -> y e. A ) | 
						
							| 16 |  | snelpwi |  |-  ( y e. A -> { y } e. ~P A ) | 
						
							| 17 | 15 16 | syl |  |-  ( y e. ( 0 [,] 1 ) -> { y } e. ~P A ) | 
						
							| 18 |  | snfi |  |-  { y } e. Fin | 
						
							| 19 |  | fict |  |-  ( { y } e. Fin -> { y } ~<_ _om ) | 
						
							| 20 | 18 19 | ax-mp |  |-  { y } ~<_ _om | 
						
							| 21 |  | orc |  |-  ( { y } ~<_ _om -> ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) | 
						
							| 23 | 22 | a1i |  |-  ( y e. ( 0 [,] 1 ) -> ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) ) | 
						
							| 24 | 17 23 | jca |  |-  ( y e. ( 0 [,] 1 ) -> ( { y } e. ~P A /\ ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) ) ) | 
						
							| 25 |  | breq1 |  |-  ( x = { y } -> ( x ~<_ _om <-> { y } ~<_ _om ) ) | 
						
							| 26 |  | difeq2 |  |-  ( x = { y } -> ( A \ x ) = ( A \ { y } ) ) | 
						
							| 27 | 26 | breq1d |  |-  ( x = { y } -> ( ( A \ x ) ~<_ _om <-> ( A \ { y } ) ~<_ _om ) ) | 
						
							| 28 | 25 27 | orbi12d |  |-  ( x = { y } -> ( ( x ~<_ _om \/ ( A \ x ) ~<_ _om ) <-> ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) ) ) | 
						
							| 29 | 28 2 | elrab2 |  |-  ( { y } e. S <-> ( { y } e. ~P A /\ ( { y } ~<_ _om \/ ( A \ { y } ) ~<_ _om ) ) ) | 
						
							| 30 | 24 29 | sylibr |  |-  ( y e. ( 0 [,] 1 ) -> { y } e. S ) | 
						
							| 31 | 30 | rgen |  |-  A. y e. ( 0 [,] 1 ) { y } e. S | 
						
							| 32 |  | eqid |  |-  ( y e. ( 0 [,] 1 ) |-> { y } ) = ( y e. ( 0 [,] 1 ) |-> { y } ) | 
						
							| 33 | 32 | rnmptss |  |-  ( A. y e. ( 0 [,] 1 ) { y } e. S -> ran ( y e. ( 0 [,] 1 ) |-> { y } ) C_ S ) | 
						
							| 34 | 31 33 | ax-mp |  |-  ran ( y e. ( 0 [,] 1 ) |-> { y } ) C_ S | 
						
							| 35 | 3 34 | eqsstri |  |-  X C_ S | 
						
							| 36 |  | ovex |  |-  ( 0 [,] 2 ) e. _V | 
						
							| 37 | 1 36 | eqeltri |  |-  A e. _V | 
						
							| 38 | 37 | a1i |  |-  ( T. -> A e. _V ) | 
						
							| 39 | 38 2 | salexct |  |-  ( T. -> S e. SAlg ) | 
						
							| 40 | 39 | mptru |  |-  S e. SAlg | 
						
							| 41 |  | ovex |  |-  ( 0 [,] 1 ) e. _V | 
						
							| 42 | 41 | mptex |  |-  ( y e. ( 0 [,] 1 ) |-> { y } ) e. _V | 
						
							| 43 | 42 | rnex |  |-  ran ( y e. ( 0 [,] 1 ) |-> { y } ) e. _V | 
						
							| 44 | 3 43 | eqeltri |  |-  X e. _V | 
						
							| 45 | 44 | a1i |  |-  ( T. -> X e. _V ) | 
						
							| 46 | 3 | unieqi |  |-  U. X = U. ran ( y e. ( 0 [,] 1 ) |-> { y } ) | 
						
							| 47 |  | vsnex |  |-  { y } e. _V | 
						
							| 48 | 47 | rgenw |  |-  A. y e. ( 0 [,] 1 ) { y } e. _V | 
						
							| 49 |  | dfiun3g |  |-  ( A. y e. ( 0 [,] 1 ) { y } e. _V -> U_ y e. ( 0 [,] 1 ) { y } = U. ran ( y e. ( 0 [,] 1 ) |-> { y } ) ) | 
						
							| 50 | 48 49 | ax-mp |  |-  U_ y e. ( 0 [,] 1 ) { y } = U. ran ( y e. ( 0 [,] 1 ) |-> { y } ) | 
						
							| 51 | 50 | eqcomi |  |-  U. ran ( y e. ( 0 [,] 1 ) |-> { y } ) = U_ y e. ( 0 [,] 1 ) { y } | 
						
							| 52 |  | iunid |  |-  U_ y e. ( 0 [,] 1 ) { y } = ( 0 [,] 1 ) | 
						
							| 53 | 46 51 52 | 3eqtrri |  |-  ( 0 [,] 1 ) = U. X | 
						
							| 54 | 45 4 53 | unisalgen |  |-  ( T. -> ( 0 [,] 1 ) e. G ) | 
						
							| 55 | 54 | mptru |  |-  ( 0 [,] 1 ) e. G | 
						
							| 56 |  | eqid |  |-  ( 0 [,] 1 ) = ( 0 [,] 1 ) | 
						
							| 57 | 1 2 56 | salexct2 |  |-  -. ( 0 [,] 1 ) e. S | 
						
							| 58 |  | nelss |  |-  ( ( ( 0 [,] 1 ) e. G /\ -. ( 0 [,] 1 ) e. S ) -> -. G C_ S ) | 
						
							| 59 | 55 57 58 | mp2an |  |-  -. G C_ S | 
						
							| 60 | 35 40 59 | 3pm3.2i |  |-  ( X C_ S /\ S e. SAlg /\ -. G C_ S ) |