| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issalnnd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 2 |  | issalnnd.z | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 3 |  | issalnnd.x | ⊢ 𝑋  =  ∪  𝑆 | 
						
							| 4 |  | issalnnd.d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑆 )  →  ( 𝑋  ∖  𝑦 )  ∈  𝑆 ) | 
						
							| 5 |  | issalnnd.i | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ 𝑆 )  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 6 |  | unieq | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∪  ∅ ) | 
						
							| 7 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑦  =  ∅  →  ∪  ∅  =  ∅ ) | 
						
							| 9 | 6 8 | eqtrd | ⊢ ( 𝑦  =  ∅  →  ∪  𝑦  =  ∅ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  ∅ )  →  ∪  𝑦  =  ∅ ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  ∅ )  →  ∅  ∈  𝑆 ) | 
						
							| 12 | 10 11 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ∅ )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 13 | 12 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  𝑦  =  ∅ )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 14 |  | neqne | ⊢ ( ¬  𝑦  =  ∅  →  𝑦  ≠  ∅ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  ¬  𝑦  =  ∅ )  →  𝑦  ≠  ∅ ) | 
						
							| 16 |  | nnfoctb | ⊢ ( ( 𝑦  ≼  ω  ∧  𝑦  ≠  ∅ )  →  ∃ 𝑒 𝑒 : ℕ –onto→ 𝑦 ) | 
						
							| 17 | 16 | 3ad2antl3 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  𝑦  ≠  ∅ )  →  ∃ 𝑒 𝑒 : ℕ –onto→ 𝑦 ) | 
						
							| 18 |  | founiiun | ⊢ ( 𝑒 : ℕ –onto→ 𝑦  →  ∪  𝑦  =  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  ∪  𝑦  =  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 20 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  𝜑 ) | 
						
							| 21 |  | fof | ⊢ ( 𝑒 : ℕ –onto→ 𝑦  →  𝑒 : ℕ ⟶ 𝑦 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑦  ∈  𝒫  𝑆  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  𝑒 : ℕ ⟶ 𝑦 ) | 
						
							| 23 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝑆  →  𝑦  ⊆  𝑆 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑦  ∈  𝒫  𝑆  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  𝑦  ⊆  𝑆 ) | 
						
							| 25 | 22 24 | fssd | ⊢ ( ( 𝑦  ∈  𝒫  𝑆  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  𝑒 : ℕ ⟶ 𝑆 ) | 
						
							| 26 | 25 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  𝑒 : ℕ ⟶ 𝑆 ) | 
						
							| 27 | 20 26 5 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 28 | 19 27 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑒 : ℕ –onto→ 𝑦 )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 29 | 28 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  →  ( 𝑒 : ℕ –onto→ 𝑦  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆 )  ∧  𝑦  ≠  ∅ )  →  ( 𝑒 : ℕ –onto→ 𝑦  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 31 | 30 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  𝑦  ≠  ∅ )  →  ( 𝑒 : ℕ –onto→ 𝑦  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 32 | 31 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  𝑦  ≠  ∅ )  →  ( ∃ 𝑒 𝑒 : ℕ –onto→ 𝑦  →  ∪  𝑦  ∈  𝑆 ) ) | 
						
							| 33 | 17 32 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  𝑦  ≠  ∅ )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 34 | 15 33 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  ∧  ¬  𝑦  =  ∅ )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 35 | 13 34 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝒫  𝑆  ∧  𝑦  ≼  ω )  →  ∪  𝑦  ∈  𝑆 ) | 
						
							| 36 | 1 2 3 4 35 | issald | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) |