Metamath Proof Explorer


Theorem dmvolsal

Description: Lebesgue measurable sets form a sigma-algebra. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion dmvolsal dom vol ∈ SAlg

Proof

Step Hyp Ref Expression
1 reex ℝ ∈ V
2 1 pwex 𝒫 ℝ ∈ V
3 dmvolss dom vol ⊆ 𝒫 ℝ
4 2 3 ssexi dom vol ∈ V
5 4 a1i ( ⊤ → dom vol ∈ V )
6 0mbl ∅ ∈ dom vol
7 6 a1i ( ⊤ → ∅ ∈ dom vol )
8 unidmvol dom vol = ℝ
9 8 eqcomi ℝ = dom vol
10 cmmbl ( 𝑦 ∈ dom vol → ( ℝ ∖ 𝑦 ) ∈ dom vol )
11 10 adantl ( ( ⊤ ∧ 𝑦 ∈ dom vol ) → ( ℝ ∖ 𝑦 ) ∈ dom vol )
12 ffvelrn ( ( 𝑒 : ℕ ⟶ dom vol ∧ 𝑛 ∈ ℕ ) → ( 𝑒𝑛 ) ∈ dom vol )
13 12 ralrimiva ( 𝑒 : ℕ ⟶ dom vol → ∀ 𝑛 ∈ ℕ ( 𝑒𝑛 ) ∈ dom vol )
14 iunmbl ( ∀ 𝑛 ∈ ℕ ( 𝑒𝑛 ) ∈ dom vol → 𝑛 ∈ ℕ ( 𝑒𝑛 ) ∈ dom vol )
15 13 14 syl ( 𝑒 : ℕ ⟶ dom vol → 𝑛 ∈ ℕ ( 𝑒𝑛 ) ∈ dom vol )
16 15 adantl ( ( ⊤ ∧ 𝑒 : ℕ ⟶ dom vol ) → 𝑛 ∈ ℕ ( 𝑒𝑛 ) ∈ dom vol )
17 5 7 9 11 16 issalnnd ( ⊤ → dom vol ∈ SAlg )
18 17 mptru dom vol ∈ SAlg