| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 2 | 1 | pwex | ⊢ 𝒫  ℝ  ∈  V | 
						
							| 3 |  | dmvolss | ⊢ dom  vol  ⊆  𝒫  ℝ | 
						
							| 4 | 2 3 | ssexi | ⊢ dom  vol  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( ⊤  →  dom  vol  ∈  V ) | 
						
							| 6 |  | 0mbl | ⊢ ∅  ∈  dom  vol | 
						
							| 7 | 6 | a1i | ⊢ ( ⊤  →  ∅  ∈  dom  vol ) | 
						
							| 8 |  | unidmvol | ⊢ ∪  dom  vol  =  ℝ | 
						
							| 9 | 8 | eqcomi | ⊢ ℝ  =  ∪  dom  vol | 
						
							| 10 |  | cmmbl | ⊢ ( 𝑦  ∈  dom  vol  →  ( ℝ  ∖  𝑦 )  ∈  dom  vol ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  dom  vol )  →  ( ℝ  ∖  𝑦 )  ∈  dom  vol ) | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝑒 : ℕ ⟶ dom  vol  ∧  𝑛  ∈  ℕ )  →  ( 𝑒 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝑒 : ℕ ⟶ dom  vol  →  ∀ 𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 14 |  | iunmbl | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑒 : ℕ ⟶ dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ⊤  ∧  𝑒 : ℕ ⟶ dom  vol )  →  ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 17 | 5 7 9 11 16 | issalnnd | ⊢ ( ⊤  →  dom  vol  ∈  SAlg ) | 
						
							| 18 | 17 | mptru | ⊢ dom  vol  ∈  SAlg |