Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
⊢ ℝ ∈ V |
2 |
1
|
pwex |
⊢ 𝒫 ℝ ∈ V |
3 |
|
dmvolss |
⊢ dom vol ⊆ 𝒫 ℝ |
4 |
2 3
|
ssexi |
⊢ dom vol ∈ V |
5 |
4
|
a1i |
⊢ ( ⊤ → dom vol ∈ V ) |
6 |
|
0mbl |
⊢ ∅ ∈ dom vol |
7 |
6
|
a1i |
⊢ ( ⊤ → ∅ ∈ dom vol ) |
8 |
|
unidmvol |
⊢ ∪ dom vol = ℝ |
9 |
8
|
eqcomi |
⊢ ℝ = ∪ dom vol |
10 |
|
cmmbl |
⊢ ( 𝑦 ∈ dom vol → ( ℝ ∖ 𝑦 ) ∈ dom vol ) |
11 |
10
|
adantl |
⊢ ( ( ⊤ ∧ 𝑦 ∈ dom vol ) → ( ℝ ∖ 𝑦 ) ∈ dom vol ) |
12 |
|
ffvelrn |
⊢ ( ( 𝑒 : ℕ ⟶ dom vol ∧ 𝑛 ∈ ℕ ) → ( 𝑒 ‘ 𝑛 ) ∈ dom vol ) |
13 |
12
|
ralrimiva |
⊢ ( 𝑒 : ℕ ⟶ dom vol → ∀ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ dom vol ) |
14 |
|
iunmbl |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ dom vol ) |
15 |
13 14
|
syl |
⊢ ( 𝑒 : ℕ ⟶ dom vol → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ dom vol ) |
16 |
15
|
adantl |
⊢ ( ( ⊤ ∧ 𝑒 : ℕ ⟶ dom vol ) → ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ∈ dom vol ) |
17 |
5 7 9 11 16
|
issalnnd |
⊢ ( ⊤ → dom vol ∈ SAlg ) |
18 |
17
|
mptru |
⊢ dom vol ∈ SAlg |