Metamath Proof Explorer
Description: The complement of an element of a sigma-algebra is in the sigma-algebra.
(Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypotheses |
saldifcld.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
|
|
saldifcld.2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
|
Assertion |
saldifcld |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
saldifcld.1 |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
saldifcld.2 |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
3 |
|
saldifcl |
⊢ ( ( 𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |