Metamath Proof Explorer


Theorem saldifcld

Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses saldifcld.1 ( 𝜑𝑆 ∈ SAlg )
saldifcld.2 ( 𝜑𝐸𝑆 )
Assertion saldifcld ( 𝜑 → ( 𝑆𝐸 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 saldifcld.1 ( 𝜑𝑆 ∈ SAlg )
2 saldifcld.2 ( 𝜑𝐸𝑆 )
3 saldifcl ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆 ) → ( 𝑆𝐸 ) ∈ 𝑆 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝑆𝐸 ) ∈ 𝑆 )