Metamath Proof Explorer


Theorem saluncld

Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses saluncld.1 ( 𝜑𝑆 ∈ SAlg )
saluncld.2 ( 𝜑𝐸𝑆 )
saluncld.3 ( 𝜑𝐹𝑆 )
Assertion saluncld ( 𝜑 → ( 𝐸𝐹 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 saluncld.1 ( 𝜑𝑆 ∈ SAlg )
2 saluncld.2 ( 𝜑𝐸𝑆 )
3 saluncld.3 ( 𝜑𝐹𝑆 )
4 saluncl ( ( 𝑆 ∈ SAlg ∧ 𝐸𝑆𝐹𝑆 ) → ( 𝐸𝐹 ) ∈ 𝑆 )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐸𝐹 ) ∈ 𝑆 )