Metamath Proof Explorer


Theorem saluncld

Description: The union of two sets in a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses saluncld.1
|- ( ph -> S e. SAlg )
saluncld.2
|- ( ph -> E e. S )
saluncld.3
|- ( ph -> F e. S )
Assertion saluncld
|- ( ph -> ( E u. F ) e. S )

Proof

Step Hyp Ref Expression
1 saluncld.1
 |-  ( ph -> S e. SAlg )
2 saluncld.2
 |-  ( ph -> E e. S )
3 saluncld.3
 |-  ( ph -> F e. S )
4 saluncl
 |-  ( ( S e. SAlg /\ E e. S /\ F e. S ) -> ( E u. F ) e. S )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( E u. F ) e. S )