Metamath Proof Explorer


Theorem saldifcld

Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses saldifcld.1
|- ( ph -> S e. SAlg )
saldifcld.2
|- ( ph -> E e. S )
Assertion saldifcld
|- ( ph -> ( U. S \ E ) e. S )

Proof

Step Hyp Ref Expression
1 saldifcld.1
 |-  ( ph -> S e. SAlg )
2 saldifcld.2
 |-  ( ph -> E e. S )
3 saldifcl
 |-  ( ( S e. SAlg /\ E e. S ) -> ( U. S \ E ) e. S )
4 1 2 3 syl2anc
 |-  ( ph -> ( U. S \ E ) e. S )