Description: The complement of an element of a sigma-algebra is in the sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | saldifcld.1 | |- ( ph -> S e. SAlg ) |
|
saldifcld.2 | |- ( ph -> E e. S ) |
||
Assertion | saldifcld | |- ( ph -> ( U. S \ E ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saldifcld.1 | |- ( ph -> S e. SAlg ) |
|
2 | saldifcld.2 | |- ( ph -> E e. S ) |
|
3 | saldifcl | |- ( ( S e. SAlg /\ E e. S ) -> ( U. S \ E ) e. S ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( U. S \ E ) e. S ) |