Step |
Hyp |
Ref |
Expression |
1 |
|
issalnnd.s |
|
2 |
|
issalnnd.z |
|
3 |
|
issalnnd.x |
|
4 |
|
issalnnd.d |
|
5 |
|
issalnnd.i |
|
6 |
|
unieq |
|
7 |
|
uni0 |
|
8 |
7
|
a1i |
|
9 |
6 8
|
eqtrd |
|
10 |
9
|
adantl |
|
11 |
2
|
adantr |
|
12 |
10 11
|
eqeltrd |
|
13 |
12
|
3ad2antl1 |
|
14 |
|
neqne |
|
15 |
14
|
adantl |
|
16 |
|
nnfoctb |
|
17 |
16
|
3ad2antl3 |
|
18 |
|
founiiun |
|
19 |
18
|
adantl |
|
20 |
|
simpll |
|
21 |
|
fof |
|
22 |
21
|
adantl |
|
23 |
|
elpwi |
|
24 |
23
|
adantr |
|
25 |
22 24
|
fssd |
|
26 |
25
|
adantll |
|
27 |
20 26 5
|
syl2anc |
|
28 |
19 27
|
eqeltrd |
|
29 |
28
|
ex |
|
30 |
29
|
adantr |
|
31 |
30
|
3adantl3 |
|
32 |
31
|
exlimdv |
|
33 |
17 32
|
mpd |
|
34 |
15 33
|
syldan |
|
35 |
13 34
|
pm2.61dan |
|
36 |
1 2 3 4 35
|
issald |
|