| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issalnnd.s |
|
| 2 |
|
issalnnd.z |
|
| 3 |
|
issalnnd.x |
|
| 4 |
|
issalnnd.d |
|
| 5 |
|
issalnnd.i |
|
| 6 |
|
unieq |
|
| 7 |
|
uni0 |
|
| 8 |
7
|
a1i |
|
| 9 |
6 8
|
eqtrd |
|
| 10 |
9
|
adantl |
|
| 11 |
2
|
adantr |
|
| 12 |
10 11
|
eqeltrd |
|
| 13 |
12
|
3ad2antl1 |
|
| 14 |
|
neqne |
|
| 15 |
14
|
adantl |
|
| 16 |
|
nnfoctb |
|
| 17 |
16
|
3ad2antl3 |
|
| 18 |
|
founiiun |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simpll |
|
| 21 |
|
fof |
|
| 22 |
21
|
adantl |
|
| 23 |
|
elpwi |
|
| 24 |
23
|
adantr |
|
| 25 |
22 24
|
fssd |
|
| 26 |
25
|
adantll |
|
| 27 |
20 26 5
|
syl2anc |
|
| 28 |
19 27
|
eqeltrd |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
3adantl3 |
|
| 32 |
31
|
exlimdv |
|
| 33 |
17 32
|
mpd |
|
| 34 |
15 33
|
syldan |
|
| 35 |
13 34
|
pm2.61dan |
|
| 36 |
1 2 3 4 35
|
issald |
|