Metamath Proof Explorer


Theorem saliunclf

Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses saliunclf.1 k φ
saliunclf.2 _ k S
saliunclf.3 _ k K
saliunclf.4 φ S SAlg
saliunclf.5 φ K ω
saliunclf.6 φ k K E S
Assertion saliunclf φ k K E S

Proof

Step Hyp Ref Expression
1 saliunclf.1 k φ
2 saliunclf.2 _ k S
3 saliunclf.3 _ k K
4 saliunclf.4 φ S SAlg
5 saliunclf.5 φ K ω
6 saliunclf.6 φ k K E S
7 1 6 ralrimia φ k K E S
8 dfiun3g k K E S k K E = ran k K E
9 7 8 syl φ k K E = ran k K E
10 eqid k K E = k K E
11 1 3 2 10 6 rnmptssdff φ ran k K E S
12 4 11 sselpwd φ ran k K E 𝒫 S
13 3 rn1st K ω ran k K E ω
14 5 13 syl φ ran k K E ω
15 4 12 14 salunicl φ ran k K E S
16 9 15 eqeltrd φ k K E S